1
0
mirror of https://github.com/MGislv/NekoX.git synced 2024-07-02 10:33:36 +00:00
NekoX/TMessagesProj/jni/mozjpeg/jcmaster.c
2020-09-30 16:48:47 +03:00

959 lines
34 KiB
C

/*
* jcmaster.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2003-2010 by Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright (C) 2010, 2016, 2018, D. R. Commander.
* mozjpeg Modifications:
* Copyright (C) 2014, Mozilla Corporation.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains master control logic for the JPEG compressor.
* These routines are concerned with parameter validation, initial setup,
* and inter-pass control (determining the number of passes and the work
* to be done in each pass).
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jpegcomp.h"
#include "jconfigint.h"
#include "jmemsys.h"
#include "jcmaster.h"
/*
* Support routines that do various essential calculations.
*/
#if JPEG_LIB_VERSION >= 70
/*
* Compute JPEG image dimensions and related values.
* NOTE: this is exported for possible use by application.
* Hence it mustn't do anything that can't be done twice.
*/
GLOBAL(void)
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
/* Do computations that are needed before master selection phase */
{
/* Hardwire it to "no scaling" */
cinfo->jpeg_width = cinfo->image_width;
cinfo->jpeg_height = cinfo->image_height;
cinfo->min_DCT_h_scaled_size = DCTSIZE;
cinfo->min_DCT_v_scaled_size = DCTSIZE;
}
#endif
LOCAL(void)
initial_setup (j_compress_ptr cinfo, boolean transcode_only)
/* Do computations that are needed before master selection phase */
{
int ci;
jpeg_component_info *compptr;
long samplesperrow;
JDIMENSION jd_samplesperrow;
#if JPEG_LIB_VERSION >= 70
#if JPEG_LIB_VERSION >= 80
if (!transcode_only)
#endif
jpeg_calc_jpeg_dimensions(cinfo);
#endif
/* Sanity check on image dimensions */
if (cinfo->_jpeg_height <= 0 || cinfo->_jpeg_width <= 0 ||
cinfo->num_components <= 0 || cinfo->input_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
/* Make sure image isn't bigger than I can handle */
if ((long) cinfo->_jpeg_height > (long) JPEG_MAX_DIMENSION ||
(long) cinfo->_jpeg_width > (long) JPEG_MAX_DIMENSION)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
/* Width of an input scanline must be representable as JDIMENSION. */
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
jd_samplesperrow = (JDIMENSION) samplesperrow;
if ((long) jd_samplesperrow != samplesperrow)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Check that number of components won't exceed internal array sizes */
if (cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
/* Compute maximum sampling factors; check factor validity */
cinfo->max_h_samp_factor = 1;
cinfo->max_v_samp_factor = 1;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->h_samp_factor <= 0 ||
compptr->h_samp_factor > MAX_SAMP_FACTOR ||
compptr->v_samp_factor <= 0 ||
compptr->v_samp_factor > MAX_SAMP_FACTOR)
ERREXIT(cinfo, JERR_BAD_SAMPLING);
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
compptr->h_samp_factor);
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
compptr->v_samp_factor);
}
/* Compute dimensions of components */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Fill in the correct component_index value; don't rely on application */
compptr->component_index = ci;
/* For compression, we never do DCT scaling. */
#if JPEG_LIB_VERSION >= 70
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE;
#else
compptr->DCT_scaled_size = DCTSIZE;
#endif
/* Size in DCT blocks */
compptr->width_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor,
(long) (cinfo->max_h_samp_factor * DCTSIZE));
compptr->height_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor,
(long) (cinfo->max_v_samp_factor * DCTSIZE));
/* Size in samples */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor,
(long) cinfo->max_h_samp_factor);
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor,
(long) cinfo->max_v_samp_factor);
/* Mark component needed (this flag isn't actually used for compression) */
compptr->component_needed = TRUE;
}
/* Compute number of fully interleaved MCU rows (number of times that
* main controller will call coefficient controller).
*/
cinfo->total_iMCU_rows = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
}
#ifdef C_MULTISCAN_FILES_SUPPORTED
LOCAL(void)
validate_script (j_compress_ptr cinfo)
/* Verify that the scan script in cinfo->scan_info[] is valid; also
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
*/
{
const jpeg_scan_info *scanptr;
int scanno, ncomps, ci, coefi, thisi;
int Ss, Se, Ah, Al;
boolean component_sent[MAX_COMPONENTS];
#ifdef C_PROGRESSIVE_SUPPORTED
int *last_bitpos_ptr;
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
/* -1 until that coefficient has been seen; then last Al for it */
#endif
if (cinfo->master->optimize_scans) {
cinfo->progressive_mode = TRUE;
/* When we optimize scans, there is redundancy in the scan list
* and this function will fail. Therefore skip all this checking
*/
return;
}
if (cinfo->num_scans <= 0)
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
* for progressive JPEG, no scan can have this.
*/
scanptr = cinfo->scan_info;
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
#ifdef C_PROGRESSIVE_SUPPORTED
cinfo->progressive_mode = TRUE;
last_bitpos_ptr = & last_bitpos[0][0];
for (ci = 0; ci < cinfo->num_components; ci++)
for (coefi = 0; coefi < DCTSIZE2; coefi++)
*last_bitpos_ptr++ = -1;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
cinfo->progressive_mode = FALSE;
for (ci = 0; ci < cinfo->num_components; ci++)
component_sent[ci] = FALSE;
}
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
/* Validate component indexes */
ncomps = scanptr->comps_in_scan;
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
for (ci = 0; ci < ncomps; ci++) {
thisi = scanptr->component_index[ci];
if (thisi < 0 || thisi >= cinfo->num_components)
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
/* Components must appear in SOF order within each scan */
if (ci > 0 && thisi <= scanptr->component_index[ci-1])
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
}
/* Validate progression parameters */
Ss = scanptr->Ss;
Se = scanptr->Se;
Ah = scanptr->Ah;
Al = scanptr->Al;
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
/* Rec. ITU-T T.81 | ISO/IEC 10918-1 simply gives the ranges 0..13 for Ah
* and Al, but that seems wrong: the upper bound ought to depend on data
* precision. Perhaps they really meant 0..N+1 for N-bit precision.
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
* out-of-range reconstructed DC values during the first DC scan,
* which might cause problems for some decoders.
*/
#if BITS_IN_JSAMPLE == 8
#define MAX_AH_AL 10
#else
#define MAX_AH_AL 13
#endif
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
if (Ss == 0) {
if (Se != 0) /* DC and AC together not OK */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
} else {
if (ncomps != 1) /* AC scans must be for only one component */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
}
for (ci = 0; ci < ncomps; ci++) {
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
for (coefi = Ss; coefi <= Se; coefi++) {
if (last_bitpos_ptr[coefi] < 0) {
/* first scan of this coefficient */
if (Ah != 0)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
} else {
/* not first scan */
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
}
last_bitpos_ptr[coefi] = Al;
}
}
#endif
} else {
/* For sequential JPEG, all progression parameters must be these: */
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
/* Make sure components are not sent twice */
for (ci = 0; ci < ncomps; ci++) {
thisi = scanptr->component_index[ci];
if (component_sent[thisi])
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
component_sent[thisi] = TRUE;
}
}
}
/* Now verify that everything got sent. */
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
/* For progressive mode, we only check that at least some DC data
* got sent for each component; the spec does not require that all bits
* of all coefficients be transmitted. Would it be wiser to enforce
* transmission of all coefficient bits??
*/
for (ci = 0; ci < cinfo->num_components; ci++) {
if (last_bitpos[ci][0] < 0)
ERREXIT(cinfo, JERR_MISSING_DATA);
}
#endif
} else {
for (ci = 0; ci < cinfo->num_components; ci++) {
if (! component_sent[ci])
ERREXIT(cinfo, JERR_MISSING_DATA);
}
}
}
#endif /* C_MULTISCAN_FILES_SUPPORTED */
LOCAL(void)
select_scan_parameters (j_compress_ptr cinfo)
/* Set up the scan parameters for the current scan */
{
int ci;
#ifdef C_MULTISCAN_FILES_SUPPORTED
my_master_ptr master = (my_master_ptr) cinfo->master;
if (master->pass_number < master->pass_number_scan_opt_base) {
cinfo->comps_in_scan = 1;
if (cinfo->master->use_scans_in_trellis) {
cinfo->cur_comp_info[0] =
&cinfo->comp_info[master->pass_number /
(4 * cinfo->master->trellis_num_loops)];
cinfo->Ss = (master->pass_number % 4 < 2) ?
1 : cinfo->master->trellis_freq_split + 1;
cinfo->Se = (master->pass_number % 4 < 2) ?
cinfo->master->trellis_freq_split : DCTSIZE2 - 1;
} else {
cinfo->cur_comp_info[0] =
&cinfo->comp_info[master->pass_number /
(2 * cinfo->master->trellis_num_loops)];
cinfo->Ss = 1;
cinfo->Se = DCTSIZE2-1;
}
}
else if (cinfo->scan_info != NULL) {
/* Prepare for current scan --- the script is already validated */
const jpeg_scan_info *scanptr = cinfo->scan_info + master->scan_number;
cinfo->comps_in_scan = scanptr->comps_in_scan;
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
cinfo->cur_comp_info[ci] =
&cinfo->comp_info[scanptr->component_index[ci]];
}
cinfo->Ss = scanptr->Ss;
cinfo->Se = scanptr->Se;
cinfo->Ah = scanptr->Ah;
cinfo->Al = scanptr->Al;
if (cinfo->master->optimize_scans) {
/* luma frequency split passes */
if (master->scan_number >= cinfo->master->num_scans_luma_dc +
3 * cinfo->master->Al_max_luma + 2 &&
master->scan_number < cinfo->master->num_scans_luma)
cinfo->Al = master->best_Al_luma;
/* chroma frequency split passes */
if (master->scan_number >= cinfo->master->num_scans_luma +
cinfo->master->num_scans_chroma_dc +
(6 * cinfo->master->Al_max_chroma + 4) &&
master->scan_number < cinfo->num_scans)
cinfo->Al = master->best_Al_chroma;
}
/* save value for later retrieval during printout of scans */
master->actual_Al[master->scan_number] = cinfo->Al;
}
else
#endif
{
/* Prepare for single sequential-JPEG scan containing all components */
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPS_IN_SCAN);
cinfo->comps_in_scan = cinfo->num_components;
for (ci = 0; ci < cinfo->num_components; ci++) {
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
}
cinfo->Ss = 0;
cinfo->Se = DCTSIZE2-1;
cinfo->Ah = 0;
cinfo->Al = 0;
}
}
LOCAL(void)
per_scan_setup (j_compress_ptr cinfo)
/* Do computations that are needed before processing a JPEG scan */
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
{
int ci, mcublks, tmp;
jpeg_component_info *compptr;
if (cinfo->comps_in_scan == 1) {
/* Noninterleaved (single-component) scan */
compptr = cinfo->cur_comp_info[0];
/* Overall image size in MCUs */
cinfo->MCUs_per_row = compptr->width_in_blocks;
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
/* For noninterleaved scan, always one block per MCU */
compptr->MCU_width = 1;
compptr->MCU_height = 1;
compptr->MCU_blocks = 1;
compptr->MCU_sample_width = DCTSIZE;
compptr->last_col_width = 1;
/* For noninterleaved scans, it is convenient to define last_row_height
* as the number of block rows present in the last iMCU row.
*/
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (tmp == 0) tmp = compptr->v_samp_factor;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
cinfo->blocks_in_MCU = 1;
cinfo->MCU_membership[0] = 0;
} else {
/* Interleaved (multi-component) scan */
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
MAX_COMPS_IN_SCAN);
/* Overall image size in MCUs */
cinfo->MCUs_per_row = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_width,
(long) (cinfo->max_h_samp_factor*DCTSIZE));
cinfo->MCU_rows_in_scan = (JDIMENSION)
jdiv_round_up((long) cinfo->_jpeg_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
cinfo->blocks_in_MCU = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Sampling factors give # of blocks of component in each MCU */
compptr->MCU_width = compptr->h_samp_factor;
compptr->MCU_height = compptr->v_samp_factor;
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE;
/* Figure number of non-dummy blocks in last MCU column & row */
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
if (tmp == 0) tmp = compptr->MCU_width;
compptr->last_col_width = tmp;
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
if (tmp == 0) tmp = compptr->MCU_height;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
mcublks = compptr->MCU_blocks;
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
while (mcublks-- > 0) {
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
}
}
}
/* Convert restart specified in rows to actual MCU count. */
/* Note that count must fit in 16 bits, so we provide limiting. */
if (cinfo->restart_in_rows > 0) {
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
}
}
/*
* Per-pass setup.
* This is called at the beginning of each pass. We determine which modules
* will be active during this pass and give them appropriate start_pass calls.
* We also set is_last_pass to indicate whether any more passes will be
* required.
*/
METHODDEF(void)
prepare_for_pass (j_compress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
cinfo->master->trellis_passes =
master->pass_number < master->pass_number_scan_opt_base;
switch (master->pass_type) {
case main_pass:
/* Initial pass: will collect input data, and do either Huffman
* optimization or data output for the first scan.
*/
select_scan_parameters(cinfo);
per_scan_setup(cinfo);
if (! cinfo->raw_data_in) {
(*cinfo->cconvert->start_pass) (cinfo);
(*cinfo->downsample->start_pass) (cinfo);
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
}
(*cinfo->fdct->start_pass) (cinfo);
(*cinfo->entropy->start_pass) (cinfo, (cinfo->optimize_coding || cinfo->master->trellis_quant) && !cinfo->arith_code);
(*cinfo->coef->start_pass) (cinfo,
(master->total_passes > 1 ?
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
if (cinfo->optimize_coding || cinfo->master->trellis_quant) {
/* No immediate data output; postpone writing frame/scan headers */
master->pub.call_pass_startup = FALSE;
} else {
/* Will write frame/scan headers at first jpeg_write_scanlines call */
master->pub.call_pass_startup = TRUE;
}
break;
#ifdef ENTROPY_OPT_SUPPORTED
case huff_opt_pass:
/* Do Huffman optimization for a scan after the first one. */
select_scan_parameters(cinfo);
per_scan_setup(cinfo);
if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) {
(*cinfo->entropy->start_pass) (cinfo, TRUE);
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
master->pub.call_pass_startup = FALSE;
break;
}
/* Special case: Huffman DC refinement scans need no Huffman table
* and therefore we can skip the optimization pass for them.
*/
master->pass_type = output_pass;
master->pass_number++;
#endif
/*FALLTHROUGH*/
case output_pass:
/* Do a data-output pass. */
/* We need not repeat per-scan setup if prior optimization pass did it. */
if (! cinfo->optimize_coding) {
select_scan_parameters(cinfo);
per_scan_setup(cinfo);
}
if (cinfo->master->optimize_scans) {
master->saved_dest = cinfo->dest;
cinfo->dest = NULL;
master->scan_size[master->scan_number] = 0;
jpeg_mem_dest_internal(cinfo, &master->scan_buffer[master->scan_number], &master->scan_size[master->scan_number], JPOOL_IMAGE);
(*cinfo->dest->init_destination)(cinfo);
}
(*cinfo->entropy->start_pass) (cinfo, FALSE);
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
/* We emit frame/scan headers now */
if (master->scan_number == 0)
(*cinfo->marker->write_frame_header) (cinfo);
(*cinfo->marker->write_scan_header) (cinfo);
master->pub.call_pass_startup = FALSE;
break;
case trellis_pass:
if (master->pass_number %
(cinfo->num_components * (cinfo->master->use_scans_in_trellis ? 4 : 2)) == 1 &&
cinfo->master->trellis_q_opt) {
int i, j;
for (i = 0; i < NUM_QUANT_TBLS; i++) {
for (j = 1; j < DCTSIZE2; j++) {
cinfo->master->norm_src[i][j] = 0.0;
cinfo->master->norm_coef[i][j] = 0.0;
}
}
}
(*cinfo->entropy->start_pass) (cinfo, !cinfo->arith_code);
(*cinfo->coef->start_pass) (cinfo, JBUF_REQUANT);
master->pub.call_pass_startup = FALSE;
break;
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
}
master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
/* Set up progress monitor's pass info if present */
if (cinfo->progress != NULL) {
cinfo->progress->completed_passes = master->pass_number;
cinfo->progress->total_passes = master->total_passes;
}
}
/*
* Special start-of-pass hook.
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
* In single-pass processing, we need this hook because we don't want to
* write frame/scan headers during jpeg_start_compress; we want to let the
* application write COM markers etc. between jpeg_start_compress and the
* jpeg_write_scanlines loop.
* In multi-pass processing, this routine is not used.
*/
METHODDEF(void)
pass_startup (j_compress_ptr cinfo)
{
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
(*cinfo->marker->write_frame_header) (cinfo);
(*cinfo->marker->write_scan_header) (cinfo);
}
LOCAL(void)
copy_buffer (j_compress_ptr cinfo, int scan_idx)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
unsigned long size = master->scan_size[scan_idx];
unsigned char * src = master->scan_buffer[scan_idx];
int i;
if (cinfo->err->trace_level > 0) {
fprintf(stderr, "SCAN ");
for (i = 0; i < cinfo->scan_info[scan_idx].comps_in_scan; i++)
fprintf(stderr, "%s%d", (i==0)?"":",", cinfo->scan_info[scan_idx].component_index[i]);
fprintf(stderr, ": %d %d", cinfo->scan_info[scan_idx].Ss, cinfo->scan_info[scan_idx].Se);
fprintf(stderr, " %d %d", cinfo->scan_info[scan_idx].Ah, master->actual_Al[scan_idx]);
fprintf(stderr, "\n");
}
while (size >= cinfo->dest->free_in_buffer)
{
MEMCOPY(cinfo->dest->next_output_byte, src, cinfo->dest->free_in_buffer);
src += cinfo->dest->free_in_buffer;
size -= cinfo->dest->free_in_buffer;
cinfo->dest->next_output_byte += cinfo->dest->free_in_buffer;
cinfo->dest->free_in_buffer = 0;
if (!(*cinfo->dest->empty_output_buffer)(cinfo))
ERREXIT(cinfo, JERR_UNSUPPORTED_SUSPEND);
}
MEMCOPY(cinfo->dest->next_output_byte, src, size);
cinfo->dest->next_output_byte += size;
cinfo->dest->free_in_buffer -= size;
}
LOCAL(void)
select_scans (j_compress_ptr cinfo, int next_scan_number)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
int base_scan_idx = 0;
int luma_freq_split_scan_start = cinfo->master->num_scans_luma_dc +
3 * cinfo->master->Al_max_luma + 2;
int chroma_freq_split_scan_start = cinfo->master->num_scans_luma +
cinfo->master->num_scans_chroma_dc +
(6 * cinfo->master->Al_max_chroma + 4);
int passes_per_scan = cinfo->optimize_coding ? 2 : 1;
if (next_scan_number > 1 && next_scan_number <= luma_freq_split_scan_start) {
if ((next_scan_number - 1) % 3 == 2) {
int Al = (next_scan_number - 1) / 3;
int i;
unsigned long cost = 0;
cost += master->scan_size[next_scan_number-2];
cost += master->scan_size[next_scan_number-1];
for (i = 0; i < Al; i++)
cost += master->scan_size[3 + 3*i];
if (Al == 0 || cost < master->best_cost) {
master->best_cost = cost;
master->best_Al_luma = Al;
} else {
master->scan_number = luma_freq_split_scan_start - 1;
master->pass_number = passes_per_scan * (master->scan_number + 1) - 1 + master->pass_number_scan_opt_base;
}
}
} else if (next_scan_number > luma_freq_split_scan_start &&
next_scan_number <= cinfo->master->num_scans_luma) {
if (next_scan_number == luma_freq_split_scan_start + 1) {
master->best_freq_split_idx_luma = 0;
master->best_cost = master->scan_size[next_scan_number-1];
} else if ((next_scan_number - luma_freq_split_scan_start) % 2 == 1) {
int idx = (next_scan_number - luma_freq_split_scan_start) >> 1;
unsigned long cost = 0;
cost += master->scan_size[next_scan_number-2];
cost += master->scan_size[next_scan_number-1];
if (cost < master->best_cost) {
master->best_cost = cost;
master->best_freq_split_idx_luma = idx;
}
/* if after testing first 3, no split is the best, don't search further */
if ((idx == 2 && master->best_freq_split_idx_luma == 0) ||
(idx == 3 && master->best_freq_split_idx_luma != 2) ||
(idx == 4 && master->best_freq_split_idx_luma != 4)) {
master->scan_number = cinfo->master->num_scans_luma - 1;
master->pass_number = passes_per_scan * (master->scan_number + 1) - 1 + master->pass_number_scan_opt_base;
master->pub.is_last_pass = (master->pass_number == master->total_passes - 1);
}
}
} else if (cinfo->num_scans > cinfo->master->num_scans_luma) {
if (next_scan_number == cinfo->master->num_scans_luma +
cinfo->master->num_scans_chroma_dc) {
base_scan_idx = cinfo->master->num_scans_luma;
master->interleave_chroma_dc = master->scan_size[base_scan_idx] <= master->scan_size[base_scan_idx+1] + master->scan_size[base_scan_idx+2];
} else if (next_scan_number > cinfo->master->num_scans_luma +
cinfo->master->num_scans_chroma_dc &&
next_scan_number <= chroma_freq_split_scan_start) {
base_scan_idx = cinfo->master->num_scans_luma +
cinfo->master->num_scans_chroma_dc;
if ((next_scan_number - base_scan_idx) % 6 == 4) {
int Al = (next_scan_number - base_scan_idx) / 6;
int i;
unsigned long cost = 0;
cost += master->scan_size[next_scan_number-4];
cost += master->scan_size[next_scan_number-3];
cost += master->scan_size[next_scan_number-2];
cost += master->scan_size[next_scan_number-1];
for (i = 0; i < Al; i++) {
cost += master->scan_size[base_scan_idx + 4 + 6*i];
cost += master->scan_size[base_scan_idx + 5 + 6*i];
}
if (Al == 0 || cost < master->best_cost) {
master->best_cost = cost;
master->best_Al_chroma = Al;
} else {
master->scan_number = chroma_freq_split_scan_start - 1;
master->pass_number = passes_per_scan * (master->scan_number + 1) - 1 + master->pass_number_scan_opt_base;
}
}
} else if (next_scan_number > chroma_freq_split_scan_start && next_scan_number <= cinfo->num_scans) {
if (next_scan_number == chroma_freq_split_scan_start + 2) {
master->best_freq_split_idx_chroma = 0;
master->best_cost = master->scan_size[next_scan_number-2];
master->best_cost += master->scan_size[next_scan_number-1];
} else if ((next_scan_number - chroma_freq_split_scan_start) % 4 == 2) {
int idx = (next_scan_number - chroma_freq_split_scan_start) >> 2;
unsigned long cost = 0;
cost += master->scan_size[next_scan_number-4];
cost += master->scan_size[next_scan_number-3];
cost += master->scan_size[next_scan_number-2];
cost += master->scan_size[next_scan_number-1];
if (cost < master->best_cost) {
master->best_cost = cost;
master->best_freq_split_idx_chroma = idx;
}
/* if after testing first 3, no split is the best, don't search further */
if ((idx == 2 && master->best_freq_split_idx_chroma == 0) ||
(idx == 3 && master->best_freq_split_idx_chroma != 2) ||
(idx == 4 && master->best_freq_split_idx_chroma != 4)) {
master->scan_number = cinfo->num_scans - 1;
master->pass_number = passes_per_scan * (master->scan_number + 1) - 1 + master->pass_number_scan_opt_base;
master->pub.is_last_pass = (master->pass_number == master->total_passes - 1);
}
}
}
}
if (master->scan_number == cinfo->num_scans - 1) {
int i, Al;
int min_Al = MIN(master->best_Al_luma, master->best_Al_chroma);
copy_buffer(cinfo, 0);
if (cinfo->num_scans > cinfo->master->num_scans_luma &&
cinfo->master->dc_scan_opt_mode != 0) {
base_scan_idx = cinfo->master->num_scans_luma;
if (master->interleave_chroma_dc && cinfo->master->dc_scan_opt_mode != 1)
copy_buffer(cinfo, base_scan_idx);
else {
copy_buffer(cinfo, base_scan_idx+1);
copy_buffer(cinfo, base_scan_idx+2);
}
}
if (master->best_freq_split_idx_luma == 0)
copy_buffer(cinfo, luma_freq_split_scan_start);
else {
copy_buffer(cinfo, luma_freq_split_scan_start+2*(master->best_freq_split_idx_luma-1)+1);
copy_buffer(cinfo, luma_freq_split_scan_start+2*(master->best_freq_split_idx_luma-1)+2);
}
/* copy the LSB refinements as well */
for (Al = master->best_Al_luma-1; Al >= min_Al; Al--)
copy_buffer(cinfo, 3 + 3*Al);
if (cinfo->num_scans > cinfo->master->num_scans_luma) {
if (master->best_freq_split_idx_chroma == 0) {
copy_buffer(cinfo, chroma_freq_split_scan_start);
copy_buffer(cinfo, chroma_freq_split_scan_start+1);
}
else {
copy_buffer(cinfo, chroma_freq_split_scan_start+4*(master->best_freq_split_idx_chroma-1)+2);
copy_buffer(cinfo, chroma_freq_split_scan_start+4*(master->best_freq_split_idx_chroma-1)+3);
copy_buffer(cinfo, chroma_freq_split_scan_start+4*(master->best_freq_split_idx_chroma-1)+4);
copy_buffer(cinfo, chroma_freq_split_scan_start+4*(master->best_freq_split_idx_chroma-1)+5);
}
base_scan_idx = cinfo->master->num_scans_luma +
cinfo->master->num_scans_chroma_dc;
for (Al = master->best_Al_chroma-1; Al >= min_Al; Al--) {
copy_buffer(cinfo, base_scan_idx + 6*Al + 4);
copy_buffer(cinfo, base_scan_idx + 6*Al + 5);
}
}
for (Al = min_Al-1; Al >= 0; Al--) {
copy_buffer(cinfo, 3 + 3*Al);
if (cinfo->num_scans > cinfo->master->num_scans_luma) {
copy_buffer(cinfo, base_scan_idx + 6*Al + 4);
copy_buffer(cinfo, base_scan_idx + 6*Al + 5);
}
}
/* free the memory allocated for buffers */
for (i = 0; i < cinfo->num_scans; i++)
if (master->scan_buffer[i])
free(master->scan_buffer[i]);
}
}
/*
* Finish up at end of pass.
*/
METHODDEF(void)
finish_pass_master (j_compress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
/* The entropy coder always needs an end-of-pass call,
* either to analyze statistics or to flush its output buffer.
*/
(*cinfo->entropy->finish_pass) (cinfo);
/* Update state for next pass */
switch (master->pass_type) {
case main_pass:
/* next pass is either output of scan 0 (after optimization)
* or output of scan 1 (if no optimization).
*/
if (cinfo->master->trellis_quant)
master->pass_type = trellis_pass;
else {
master->pass_type = output_pass;
if (! cinfo->optimize_coding)
master->scan_number++;
}
break;
case huff_opt_pass:
/* next pass is always output of current scan */
master->pass_type = (master->pass_number < master->pass_number_scan_opt_base-1) ? trellis_pass : output_pass;
break;
case output_pass:
/* next pass is either optimization or output of next scan */
if (cinfo->optimize_coding)
master->pass_type = huff_opt_pass;
if (cinfo->master->optimize_scans) {
(*cinfo->dest->term_destination)(cinfo);
cinfo->dest = master->saved_dest;
select_scans(cinfo, master->scan_number + 1);
}
master->scan_number++;
break;
case trellis_pass:
if (cinfo->optimize_coding)
master->pass_type = huff_opt_pass;
else
master->pass_type = (master->pass_number < master->pass_number_scan_opt_base-1) ? trellis_pass : output_pass;
if ((master->pass_number + 1) %
(cinfo->num_components * (cinfo->master->use_scans_in_trellis ? 4 : 2)) == 0 &&
cinfo->master->trellis_q_opt) {
int i, j;
for (i = 0; i < NUM_QUANT_TBLS; i++) {
for (j = 1; j < DCTSIZE2; j++) {
if (cinfo->master->norm_coef[i][j] != 0.0) {
int q = (int)(cinfo->master->norm_src[i][j] /
cinfo->master->norm_coef[i][j] + 0.5);
if (q > 254) q = 254;
if (q < 1) q = 1;
cinfo->quant_tbl_ptrs[i]->quantval[j] = q;
}
}
}
}
break;
}
master->pass_number++;
}
/*
* Initialize master compression control.
*/
GLOBAL(void)
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
master->pub.prepare_for_pass = prepare_for_pass;
master->pub.pass_startup = pass_startup;
master->pub.finish_pass = finish_pass_master;
master->pub.is_last_pass = FALSE;
master->pub.call_pass_startup = FALSE;
/* Validate parameters, determine derived values */
initial_setup(cinfo, transcode_only);
if (cinfo->scan_info != NULL) {
#ifdef C_MULTISCAN_FILES_SUPPORTED
validate_script(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
cinfo->progressive_mode = FALSE;
cinfo->num_scans = 1;
}
if (cinfo->progressive_mode && !cinfo->arith_code) /* TEMPORARY HACK ??? */
cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
/* Initialize my private state */
if (transcode_only) {
/* no main pass in transcoding */
if (cinfo->optimize_coding)
master->pass_type = huff_opt_pass;
else
master->pass_type = output_pass;
} else {
/* for normal compression, first pass is always this type: */
master->pass_type = main_pass;
}
master->scan_number = 0;
master->pass_number = 0;
if (cinfo->optimize_coding)
master->total_passes = cinfo->num_scans * 2;
else
master->total_passes = cinfo->num_scans;
master->jpeg_version = PACKAGE_NAME " version " VERSION " (build " BUILD ")";
master->pass_number_scan_opt_base = 0;
if (cinfo->master->trellis_quant) {
if (cinfo->optimize_coding)
master->pass_number_scan_opt_base =
((cinfo->master->use_scans_in_trellis) ? 4 : 2) * cinfo->num_components *
cinfo->master->trellis_num_loops;
else
master->pass_number_scan_opt_base =
((cinfo->master->use_scans_in_trellis) ? 2 : 1) * cinfo->num_components *
cinfo->master->trellis_num_loops + 1;
master->total_passes += master->pass_number_scan_opt_base;
}
if (cinfo->master->optimize_scans) {
int i;
master->best_Al_chroma = 0;
for (i = 0; i < cinfo->num_scans; i++)
master->scan_buffer[i] = NULL;
}
}