1
0
mirror of https://github.com/blawar/GLideN64.git synced 2024-06-27 23:14:05 +00:00
GLideN64/src/gSP.cpp
2022-02-23 04:58:50 +01:00

2210 lines
64 KiB
C++

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <algorithm>
#include "N64.h"
#include "GLideN64.h"
#include "DebugDump.h"
#include "Types.h"
#include "RSP.h"
#include "GBI.h"
#include "gSP.h"
#include "gDP.h"
#include "3DMath.h"
#include "CRC.h"
#include "VI.h"
#include "FrameBuffer.h"
#include "Config.h"
#include "Log.h"
#include "DisplayWindow.h"
#ifdef NATIVE
#define RDRAM ((u8*)0)
#endif
using namespace std;
using namespace graphics;
#define INDEXMAP_SIZE 80U
#ifdef __VEC4_OPT
#define VEC_OPT 4U
#else
#define VEC_OPT 1U
#endif
static bool g_ConkerUcode;
void gSPFlushTriangles()
{
if ((gSP.geometryMode & G_SHADING_SMOOTH) == 0) {
dwnd().getDrawer().drawTriangles();
return;
}
if (
(RSP.nextCmd != G_TRI1) &&
(RSP.nextCmd != G_TRI2) &&
(RSP.nextCmd != G_TRIX) &&
(RSP.nextCmd != G_QUAD)
) {
dwnd().getDrawer().drawTriangles();
DebugMsg(DEBUG_NORMAL, "Triangles flushed;\n");
}
}
static
void _gSPCombineMatrices()
{
MultMatrix(gSP.matrix.projection, gSP.matrix.modelView[gSP.matrix.modelViewi], gSP.matrix.combined);
gSP.changed &= ~CHANGED_MATRIX;
}
void gSPCombineMatrices(u32 _mode)
{
if (_mode == 1)
_gSPCombineMatrices();
else
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Unknown gSPCombineMatrices mode: %u\n", _mode);
DebugMsg(DEBUG_NORMAL, "gSPCombineMatrices();\n");
}
void gSPTriangle(u32 v0, u32 v1, u32 v2)
{
GraphicsDrawer & drawer = dwnd().getDrawer();
if ((v0 < INDEXMAP_SIZE) && (v1 < INDEXMAP_SIZE) && (v2 < INDEXMAP_SIZE)) {
if (drawer.isClipped(v0, v1, v2)) {
DebugMsg(DEBUG_NORMAL, "Triangle clipped (%i, %i, %i)\n", v0, v1, v2);
return;
}
if (drawer.isRejected(v0, v1, v2)) {
DebugMsg(DEBUG_NORMAL, "Triangle rejected (%i, %i, %i)\n", v0, v1, v2);
return;
}
drawer.addTriangle(v0, v1, v2);
DebugMsg(DEBUG_NORMAL, "Triangle #%i added (%i, %i, %i)\n", gSP.tri_num++, v0, v1, v2);
}
}
void gSP1Triangle( const u32 v0, const u32 v1, const u32 v2)
{
DebugMsg(DEBUG_NORMAL, "gSP1Triangle (%i, %i, %i)\n", v0, v1, v2);
gSPTriangle( v0, v1, v2);
gSPFlushTriangles();
}
void gSP2Triangles(const u32 v00, const u32 v01, const u32 v02, const u32 flag0,
const u32 v10, const u32 v11, const u32 v12, const u32 flag1 )
{
DebugMsg(DEBUG_NORMAL, "gSP2Triangle (%i, %i, %i)-(%i, %i, %i)\n", v00, v01, v02, v10, v11, v12);
gSPTriangle( v00, v01, v02);
gSPTriangle( v10, v11, v12);
gSPFlushTriangles();
}
void gSP4Triangles(const u32 v00, const u32 v01, const u32 v02,
const u32 v10, const u32 v11, const u32 v12,
const u32 v20, const u32 v21, const u32 v22,
const u32 v30, const u32 v31, const u32 v32 )
{
DebugMsg(DEBUG_NORMAL, "gSP4Triangle (%i, %i, %i)-(%i, %i, %i)-(%i, %i, %i)-(%i, %i, %i)\n",
v00, v01, v02, v10, v11, v12, v20, v21, v22, v30, v31, v32);
gSPTriangle(v00, v01, v02);
gSPTriangle(v10, v11, v12);
gSPTriangle(v20, v21, v22);
gSPTriangle(v30, v31, v32);
gSPFlushTriangles();
}
gSPInfo gSP;
static
f32 identityMatrix[4][4] =
{
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
void gSPLoadUcodeEx( word uc_start, word uc_dstart, u16 uc_dsize )
{
gSP.matrix.modelViewi = 0;
gSP.status[0] = gSP.status[1] = gSP.status[2] = gSP.status[3] = 0;
gSP.fog.multiplier = gSP.fog.offset = 0;
gSP.fog.multiplierf = gSP.fog.offsetf = 0.0f;
gSP.geometryMode = 0U;
gSP.changed |= CHANGED_MATRIX | CHANGED_LIGHT | CHANGED_LOOKAT | CHANGED_GEOMETRYMODE;
#ifndef NATIVE
if ((((uc_start & 0x1FFFFFFF) + 4096) > RDRAMSize) || (((uc_dstart & 0x1FFFFFFF) + uc_dsize) > RDRAMSize)) {
DebugMsg(DEBUG_NORMAL|DEBUG_ERROR, "gSPLoadUcodeEx out of RDRAM\n");
return;
}
#endif
GBI.loadMicrocode(uc_start, uc_dstart, uc_dsize);
RSP.uc_start = uc_start;
RSP.uc_dstart = uc_dstart;
DebugMsg(DEBUG_NORMAL, "gSPLoadUcodeEx type: %d\n", GBI.getMicrocodeType());
}
void gSPNoOp()
{
gSPFlushTriangles();
DebugMsg(DEBUG_NORMAL | DEBUG_IGNORED, "gSPNoOp();\n");
}
void gSPMatrix( u32 matrix, u8 param )
{
f32 mtx[4][4];
word address = RSP_SegmentToPhysical( matrix );
#ifndef NATIVE
if (address + 64 > RDRAMSize) {
#else
if (!address || address + 64 > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load matrix from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPMatrix( 0x%08X, %s | %s | %s );\n",
matrix,
(param & G_MTX_PROJECTION) ? "G_MTX_PROJECTION" : "G_MTX_MODELVIEW",
(param & G_MTX_LOAD) ? "G_MTX_LOAD" : "G_MTX_MUL",
(param & G_MTX_PUSH) ? "G_MTX_PUSH" : "G_MTX_NOPUSH" );
return;
}
RSP_LoadMatrix( mtx, address );
if (param & G_MTX_PROJECTION) {
if (param & G_MTX_LOAD)
CopyMatrix( gSP.matrix.projection, mtx );
else
MultMatrix2( gSP.matrix.projection, mtx );
} else {
if ((param & G_MTX_PUSH)) {
if (gSP.matrix.modelViewi < (gSP.matrix.stackSize)) {
CopyMatrix(gSP.matrix.modelView[gSP.matrix.modelViewi + 1], gSP.matrix.modelView[gSP.matrix.modelViewi]);
gSP.matrix.modelViewi++;
} else
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Modelview stack overflow\n");
}
if (param & G_MTX_LOAD)
CopyMatrix( gSP.matrix.modelView[gSP.matrix.modelViewi], mtx );
else
MultMatrix2( gSP.matrix.modelView[gSP.matrix.modelViewi], mtx );
gSP.changed |= CHANGED_LIGHT | CHANGED_LOOKAT;
}
gSP.changed |= CHANGED_MATRIX;
DebugMsg(DEBUG_NORMAL, "gSPMatrix( 0x%08X, %s | %s | %s );\n",
matrix,
(param & G_MTX_PROJECTION) ? "G_MTX_PROJECTION" : "G_MTX_MODELVIEW",
(param & G_MTX_LOAD) ? "G_MTX_LOAD" : "G_MTX_MUL",
(param & G_MTX_PUSH) ? "G_MTX_PUSH" : "G_MTX_NOPUSH");
DebugMsg(DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[0][0], mtx[0][1], mtx[0][2], mtx[0][3] );
DebugMsg( DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[1][0], mtx[1][1], mtx[1][2], mtx[1][3] );
DebugMsg( DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[2][0], mtx[2][1], mtx[2][2], mtx[2][3] );
DebugMsg( DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[3][0], mtx[3][1], mtx[3][2], mtx[3][3] );
}
void gSPDMAMatrix( u32 matrix, u8 index, u8 multiply )
{
f32 mtx[4][4];
word address = gSP.DMAOffsets.mtx + RSP_SegmentToPhysical( matrix );
#ifndef NATIVE
if (address + 64 > RDRAMSize) {
#else
if (!address || address + 64 > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load matrix from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPDMAMatrix( 0x%08X, %i, %s );\n",
matrix, index, multiply ? "TRUE" : "FALSE");
return;
}
RSP_LoadMatrix(mtx, address);
gSP.matrix.modelViewi = index;
if (multiply)
MultMatrix(gSP.matrix.modelView[0], mtx, gSP.matrix.modelView[gSP.matrix.modelViewi]);
else
CopyMatrix( gSP.matrix.modelView[gSP.matrix.modelViewi], mtx );
CopyMatrix( gSP.matrix.projection, identityMatrix );
gSP.changed |= CHANGED_MATRIX | CHANGED_LIGHT | CHANGED_LOOKAT;
DebugMsg(DEBUG_NORMAL, "gSPDMAMatrix( 0x%08X, %i, %s );\n",
matrix, index, multiply ? "TRUE" : "FALSE");
DebugMsg(DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[0][0], mtx[0][1], mtx[0][2], mtx[0][3] );
DebugMsg( DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[1][0], mtx[1][1], mtx[1][2], mtx[1][3] );
DebugMsg( DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[2][0], mtx[2][1], mtx[2][2], mtx[2][3] );
DebugMsg( DEBUG_DETAIL, "// %12.6f %12.6f %12.6f %12.6f\n",
mtx[3][0], mtx[3][1], mtx[3][2], mtx[3][3] );
}
extern "C" u64 gfx_width();
extern "C" u64 gfx_height();
#define SCREEN_WIDTH 320
#define SCREEN_HEIGHT 240
#define HALF_SCREEN_WIDTH (SCREEN_WIDTH / 2)
#define HALF_SCREEN_HEIGHT (SCREEN_HEIGHT / 2)
#define RATIO_X (gfx_width() / (2.0f * HALF_SCREEN_WIDTH))
#define RATIO_Y (gfx_height() / (2.0f * HALF_SCREEN_HEIGHT))
void gSPViewport( u32 v )
{
word address = RSP_SegmentToPhysical( v );
#ifndef NATIVE
if ((address + 16) > RDRAMSize) {
#else
if (!address || (address + 16) > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load viewport from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPViewport( 0x%08X );\n", v);
return;
}
Vp_t* vp = (Vp_t*)address;
#ifdef NATIVE
gSP.viewport.vscale[0] = _FIXED2FLOAT( vp->vscale.x, 2 );
gSP.viewport.vscale[1] = _FIXED2FLOAT( vp->vscale.y, 2 );
gSP.viewport.vscale[2] = _FIXED2FLOAT( vp->vscale.z, 10 );// * 0.00097847357f;
gSP.viewport.vscale[3] = vp->vscale.w;
gSP.viewport.vtrans[0] = _FIXED2FLOAT( vp->vtrans.x, 2 );
gSP.viewport.vtrans[1] = _FIXED2FLOAT( vp->vtrans.y, 2 );
gSP.viewport.vtrans[2] = _FIXED2FLOAT( vp->vtrans.z, 10 );// * 0.00097847357f;
gSP.viewport.vtrans[3] = vp->vtrans.w;
#else
gSP.viewport.vscale[0] = _FIXED2FLOAT( vp->vscale.y, 2 );
gSP.viewport.vscale[1] = _FIXED2FLOAT( vp->vscale.x, 2 );
gSP.viewport.vscale[2] = _FIXED2FLOAT( vp->vscale.w, 10 );// * 0.00097847357f;
gSP.viewport.vscale[3] = vp->vscale.z;
gSP.viewport.vtrans[0] = _FIXED2FLOAT( vp->vtrans.y, 2 );
gSP.viewport.vtrans[1] = _FIXED2FLOAT( vp->vtrans.x, 2 );
gSP.viewport.vtrans[2] = _FIXED2FLOAT( vp->vtrans.w, 10 );// * 0.00097847357f;
gSP.viewport.vtrans[3] = vp->vtrans.z;
#endif
if (gSP.viewport.vscale[1] < 0.0f && !GBI.isNegativeY())
gSP.viewport.vscale[1] = -gSP.viewport.vscale[1];
gSP.viewport.x = gSP.viewport.vtrans[0] - gSP.viewport.vscale[0];
gSP.viewport.y = gSP.viewport.vtrans[1] - gSP.viewport.vscale[1];
gSP.viewport.width = fabs(gSP.viewport.vscale[0]) * 2;
gSP.viewport.height = fabs(gSP.viewport.vscale[1] * 2);
gSP.viewport.nearz = gSP.viewport.vtrans[2] - gSP.viewport.vscale[2];
gSP.viewport.farz = (gSP.viewport.vtrans[2] + gSP.viewport.vscale[2]) ;
/*gSP.viewport.x *= RATIO_X;
gSP.viewport.y *= RATIO_Y;
gSP.viewport.width /= RATIO_X;
gSP.viewport.height /= RATIO_Y;*/
gSP.changed |= CHANGED_VIEWPORT;
DebugMsg(DEBUG_NORMAL, "gSPViewport scale(%02f, %02f, %02f), trans(%02f, %02f, %02f)\n",
gSP.viewport.vscale[0], gSP.viewport.vscale[1], gSP.viewport.vscale[2],
gSP.viewport.vtrans[0], gSP.viewport.vtrans[1], gSP.viewport.vtrans[2]);
}
void gSPForceMatrix( u32 mptr )
{
word address = RSP_SegmentToPhysical( mptr );
#ifndef NATIVE
if (address + 64 > RDRAMSize) {
#else
if (!address || address + 64 > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load from invalid address");
DebugMsg(DEBUG_NORMAL, "gSPForceMatrix( 0x%08X );\n", mptr);
return;
}
RSP_LoadMatrix(gSP.matrix.combined, address);
gSP.changed &= ~CHANGED_MATRIX;
DebugMsg(DEBUG_NORMAL, "gSPForceMatrix( 0x%08X );\n", mptr);
}
void gSPLight( u32 l, s32 n )
{
--n;
word addrByte = RSP_SegmentToPhysical( l );
#ifndef NATIVE
if ((addrByte + sizeof( Light )) > RDRAMSize) {
#else
if (!addrByte || (addrByte + sizeof( Light )) > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load light from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPLight( 0x%08X, LIGHT_%i );\n", l, n );
return;
}
Light *light = (Light*)&RDRAM[addrByte];
if (n < 8) {
gSP.lights.rgb[n][R] = _FIXED2FLOATCOLOR(light->r,8);
gSP.lights.rgb[n][G] = _FIXED2FLOATCOLOR(light->g,8);
gSP.lights.rgb[n][B] = _FIXED2FLOATCOLOR(light->b,8);
gSP.lights.rgb2[n][R] = _FIXED2FLOATCOLOR(light->r2, 8);
gSP.lights.rgb2[n][G] = _FIXED2FLOATCOLOR(light->g2, 8);
gSP.lights.rgb2[n][B] = _FIXED2FLOATCOLOR(light->b2, 8);
gSP.lights.xyz[n][X] = light->x;
gSP.lights.xyz[n][Y] = light->y;
gSP.lights.xyz[n][Z] = light->z;
Normalize( gSP.lights.xyz[n] );
word addrShort = addrByte >> 1;
gSP.lights.pos_xyzw[n][X] = (float)(((short*)RDRAM)[(addrShort+4)^1]);
gSP.lights.pos_xyzw[n][Y] = (float)(((short*)RDRAM)[(addrShort+5)^1]);
gSP.lights.pos_xyzw[n][Z] = (float)(((short*)RDRAM)[(addrShort+6)^1]);
gSP.lights.ca[n] = (float)(RDRAM[(addrByte + 3) ^ 3]);
gSP.lights.la[n] = (float)(RDRAM[(addrByte + 7) ^ 3]);
gSP.lights.qa[n] = (float)(RDRAM[(addrByte + 14) ^ 3]);
}
gSP.changed |= CHANGED_LIGHT;
DebugMsg( DEBUG_DETAIL, "// x = %2.6f y = %2.6f z = %2.6f\n",
_FIXED2FLOAT( light->x, 7 ), _FIXED2FLOAT( light->y, 7 ), _FIXED2FLOAT( light->z, 7 ) );
DebugMsg( DEBUG_DETAIL, "// r = %3i g = %3i b = %3i\n",
light->r, light->g, light->b );
DebugMsg(DEBUG_NORMAL, "gSPLight( 0x%08X, LIGHT_%i );\n",
l, n );
}
void gSPLightCBFD( u32 l, s32 n )
{
word addrByte = RSP_SegmentToPhysical( l );
#ifndef NATIVE
if ((addrByte + sizeof( Light )) > RDRAMSize) {
#else
if (!addrByte || (addrByte + sizeof( Light )) > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load light from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPLight( 0x%08X, LIGHT_%i );\n", l, n );
return;
}
Light *light = (Light*)&RDRAM[addrByte];
if (n < 12) {
gSP.lights.rgb[n][R] = _FIXED2FLOATCOLOR(light->r, 8);
gSP.lights.rgb[n][G] = _FIXED2FLOATCOLOR(light->g, 8);
gSP.lights.rgb[n][B] = _FIXED2FLOATCOLOR(light->b, 8);
gSP.lights.rgb2[n][R] = _FIXED2FLOATCOLOR(light->r2, 8);
gSP.lights.rgb2[n][G] = _FIXED2FLOATCOLOR(light->g2, 8);
gSP.lights.rgb2[n][B] = _FIXED2FLOATCOLOR(light->b2, 8);
gSP.lights.xyz[n][X] = light->x;
gSP.lights.xyz[n][Y] = light->y;
gSP.lights.xyz[n][Z] = light->z;
Normalize( gSP.lights.xyz[n] );
word addrShort = addrByte >> 1;
gSP.lights.pos_xyzw[n][X] = (float)(((short*)RDRAM)[(addrShort+16)^1]);
gSP.lights.pos_xyzw[n][Y] = (float)(((short*)RDRAM)[(addrShort+17)^1]);
gSP.lights.pos_xyzw[n][Z] = (float)(((short*)RDRAM)[(addrShort+18)^1]);
gSP.lights.pos_xyzw[n][W] = (float)(((short*)RDRAM)[(addrShort+19)^1]);
gSP.lights.ca[n] = (float)(RDRAM[(addrByte + 12) ^ 3]) / 16.0f;
}
gSP.changed |= CHANGED_LIGHT;
DebugMsg(DEBUG_NORMAL, "gSPLight( 0x%08X, LIGHT_%i );\n", l, n);
DebugMsg(DEBUG_DETAIL, "// x = %2.6f y = %2.6f z = %2.6f\n",
_FIXED2FLOAT( light->x, 7 ), _FIXED2FLOAT( light->y, 7 ), _FIXED2FLOAT( light->z, 7 ) );
DebugMsg( DEBUG_DETAIL, "// r = %3i g = %3i b = %3i\n",
light->r, light->g, light->b );
}
void gSPLightAcclaim(u32 l, s32 n)
{
word addrByte = RSP_SegmentToPhysical(l);
if (n < 10) {
const word addrShort = addrByte >> 1;
gSP.lights.pos_xyzw[n][X] = (f32)(((s16*)RDRAM)[(addrShort + 0) ^ 1]);
gSP.lights.pos_xyzw[n][Y] = (f32)(((s16*)RDRAM)[(addrShort + 1) ^ 1]);
gSP.lights.pos_xyzw[n][Z] = (f32)(((s16*)RDRAM)[(addrShort + 2) ^ 1]);
gSP.lights.ca[n] = (f32)(((s16*)RDRAM)[(addrShort + 5) ^ 1]);
gSP.lights.la[n] = _FIXED2FLOAT((((u16*)RDRAM)[(addrShort + 6) ^ 1]), 16);
gSP.lights.qa[n] = (f32)(((u16*)RDRAM)[(addrShort + 7) ^ 1]);
gSP.lights.rgb[n][R] = _FIXED2FLOATCOLOR((RDRAM[(addrByte + 6) ^ 3]), 8);
gSP.lights.rgb[n][G] = _FIXED2FLOATCOLOR((RDRAM[(addrByte + 7) ^ 3]), 8);
gSP.lights.rgb[n][B] = _FIXED2FLOATCOLOR((RDRAM[(addrByte + 8) ^ 3]), 8);
gSP.lights.rgb2[n][R] = gSP.lights.rgb[n][R];
gSP.lights.rgb2[n][G] = gSP.lights.rgb[n][G];
gSP.lights.rgb2[n][B] = gSP.lights.rgb[n][B];
}
gSP.changed |= CHANGED_LIGHT;
DebugMsg(DEBUG_NORMAL, "gSPLightAcclaim( 0x%08X, LIGHT_%i ca=%f la=%f);\n", l, n, gSP.lights.ca[n], gSP.lights.la[n]);
}
void gSPLookAt( u32 _l, u32 _n )
{
word address = RSP_SegmentToPhysical(_l);
#ifndef NATIVE
if ((address + sizeof(Light)) > RDRAMSize) {
#else
if (!address || (address + sizeof(Light)) > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load light from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPLookAt( 0x%08X, LOOKAT_%i );\n", _l, _n);
return;
}
assert(_n < 2);
Light *light = (Light*)&RDRAM[address];
gSP.lookat.xyz[_n][X] = light->x;
gSP.lookat.xyz[_n][Y] = light->y;
gSP.lookat.xyz[_n][Z] = light->z;
gSP.lookatEnable = (_n == 0) || (_n == 1 && (light->x != 0 || light->y != 0));
Normalize(gSP.lookat.xyz[_n]);
gSP.changed |= CHANGED_LOOKAT;
DebugMsg(DEBUG_NORMAL, "gSPLookAt( 0x%08X, LOOKAT_%i );\n", _l, _n);
}
static
void gSPUpdateLightVectors()
{
InverseTransformVectorNormalizeN(&gSP.lights.xyz[0], &gSP.lights.i_xyz[0],
gSP.matrix.modelView[gSP.matrix.modelViewi], gSP.numLights);
gSP.changed ^= CHANGED_LIGHT;
gSP.changed |= CHANGED_HW_LIGHT;
}
static
void gSPUpdateLookatVectors()
{
if (gSP.lookatEnable) {
InverseTransformVectorNormalizeN(&gSP.lookat.xyz[0], &gSP.lookat.i_xyz[0],
gSP.matrix.modelView[gSP.matrix.modelViewi], 2);
}
gSP.changed ^= CHANGED_LOOKAT;
}
/*---------------------------------Vertex Load------------------------------------*/
static
void gSPTransformVector_default(float vtx[4], float mtx[4][4])
{
const float x = vtx[0];
const float y = vtx[1];
const float z = vtx[2];
vtx[0] = x * mtx[0][0] + y * mtx[1][0] + z * mtx[2][0] + mtx[3][0];
vtx[1] = x * mtx[0][1] + y * mtx[1][1] + z * mtx[2][1] + mtx[3][1];
vtx[2] = x * mtx[0][2] + y * mtx[1][2] + z * mtx[2][2] + mtx[3][2];
vtx[3] = x * mtx[0][3] + y * mtx[1][3] + z * mtx[2][3] + mtx[3][3];
}
static
void gSPInverseTransformVector_default(float vec[3], float mtx[4][4])
{
const float x = vec[0];
const float y = vec[1];
const float z = vec[2];
vec[0] = mtx[0][0] * x + mtx[0][1] * y + mtx[0][2] * z;
vec[1] = mtx[1][0] * x + mtx[1][1] * y + mtx[1][2] * z;
vec[2] = mtx[2][0] * x + mtx[2][1] * y + mtx[2][2] * z;
}
template <u32 VNUM>
void gSPLightVertexStandard(u32 v, SPVertex * spVtx)
{
#ifndef __NEON_OPT
if (!isHWLightingAllowed()) {
for(int j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v+j];
const bool useFirstColor = ((v + j) & 1) == 0;
const float* pColor = useFirstColor ? gSP.lights.rgb[gSP.numLights] : gSP.lights.rgb2[gSP.numLights];
vtx.r = pColor[R];
vtx.g = pColor[G];
vtx.b = pColor[B];
vtx.HWLight = 0;
for (u32 i = 0; i < gSP.numLights; ++i) {
const f32 intensity = DotProduct( &vtx.nx, gSP.lights.i_xyz[i] );
if (intensity > 0.0f) {
pColor = useFirstColor ? gSP.lights.rgb[i] : gSP.lights.rgb2[i];
vtx.r += pColor[R] * intensity;
vtx.g += pColor[G] * intensity;
vtx.b += pColor[B] * intensity;
}
}
vtx.r = min(1.0f, vtx.r);
vtx.g = min(1.0f, vtx.g);
vtx.b = min(1.0f, vtx.b);
}
} else {
for(int j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v+j];
TransformVectorNormalize(&vtx.r, gSP.matrix.modelView[gSP.matrix.modelViewi]);
vtx.HWLight = gSP.numLights;
}
}
#else
void gSPLightVertex_NEON(u32 vnum, u32 v, SPVertex * spVtx);
gSPLightVertex_NEON(VNUM, v, spVtx);
#endif
}
template <u32 VNUM>
void gSPLightVertexCBFD_basic(u32 v, SPVertex * spVtx)
{
for (int j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v + j];
vtx.HWLight = 0;
if (vtx.flag < 0)
continue;
f32 r = gSP.lights.rgb[gSP.numLights][R];
f32 g = gSP.lights.rgb[gSP.numLights][G];
f32 b = gSP.lights.rgb[gSP.numLights][B];
const f32 vPos[3] = {
(vtx.x + gSP.cbfd.vertexCoordMod[ 8])*gSP.cbfd.vertexCoordMod[12],
(vtx.y + gSP.cbfd.vertexCoordMod[ 9])*gSP.cbfd.vertexCoordMod[13],
(vtx.z + gSP.cbfd.vertexCoordMod[10])*gSP.cbfd.vertexCoordMod[14]
};
for (int l = gSP.numLights - 2; l >= 0; --l) {
const f32 vx = vPos[X] - gSP.lights.pos_xyzw[l][X];
const f32 vy = vPos[Y] - gSP.lights.pos_xyzw[l][Y];
const f32 vz = vPos[Z] - gSP.lights.pos_xyzw[l][Z];
const f32 len = 2.0f * (vx*vx + vy*vy + vz*vz) * FIXED2FLOATRECIP16;
f32 intensity = std::min(1.0f, gSP.lights.ca[l] / len);
if (intensity > 0.0f) {
r += gSP.lights.rgb[l][R] * intensity;
g += gSP.lights.rgb[l][G] * intensity;
b += gSP.lights.rgb[l][B] * intensity;
}
}
r = min(1.0f, r);
g = min(1.0f, g);
b = min(1.0f, b);
vtx.r *= r;
vtx.g *= g;
vtx.b *= b;
}
}
template <u32 VNUM>
void gSPLightVertexCBFD_advanced(u32 v, SPVertex * spVtx)
{
for (int j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v + j];
vtx.HWLight = 0;
if (vtx.flag < 0)
continue;
const f32 vPos[3] = {
(vtx.x + gSP.cbfd.vertexCoordMod[ 8])*gSP.cbfd.vertexCoordMod[12],
(vtx.y + gSP.cbfd.vertexCoordMod[ 9])*gSP.cbfd.vertexCoordMod[13],
(vtx.z + gSP.cbfd.vertexCoordMod[10])*gSP.cbfd.vertexCoordMod[14]
};
int l = gSP.numLights;
f32 r = gSP.lights.rgb[l][R];
f32 g = gSP.lights.rgb[l][G];
f32 b = gSP.lights.rgb[l][B];
--l;
f32 intensity = std::min(1.0f, DotProduct(&vtx.nx, gSP.lights.i_xyz[l]));
if (intensity > 0.0f) {
r += gSP.lights.rgb[l][R] * intensity;
g += gSP.lights.rgb[l][G] * intensity;
b += gSP.lights.rgb[l][B] * intensity;
}
while (--l >= 0) {
const f32 vx = vPos[X] - gSP.lights.pos_xyzw[l][X];
const f32 vy = vPos[Y] - gSP.lights.pos_xyzw[l][Y];
const f32 vz = vPos[Z] - gSP.lights.pos_xyzw[l][Z];
const f32 len = 2.0f * (vx*vx + vy*vy + vz*vz) * FIXED2FLOATRECIP16;
intensity = std::min(1.0f, gSP.lights.ca[l] / len);
if ((gSP.geometryMode & G_POINT_LIGHTING) != 0)
intensity *= std::min(1.0f, DotProduct(&vtx.nx, gSP.lights.i_xyz[l]));;
if (intensity > 0.0f) {
r += gSP.lights.rgb[l][R] * intensity;
g += gSP.lights.rgb[l][G] * intensity;
b += gSP.lights.rgb[l][B] * intensity;
}
}
r = min(1.0f, r);
g = min(1.0f, g);
b = min(1.0f, b);
vtx.r *= r;
vtx.g *= g;
vtx.b *= b;
}
}
template <u32 VNUM>
void gSPLightVertex(u32 _v, SPVertex * _spVtx)
{
if (g_ConkerUcode) {
if (gSP.cbfd.advancedLighting)
gSPLightVertexCBFD_advanced<VNUM>(_v, _spVtx);
else
gSPLightVertexCBFD_basic<VNUM>(_v, _spVtx);
} else
gSPLightVertexStandard<VNUM>(_v, _spVtx);
}
void gSPLightVertex(SPVertex & _vtx)
{
gSPLightVertex<1>(0, &_vtx);
}
template <u32 VNUM>
void gSPPointLightVertexZeldaMM(u32 v, float _vecPos[VNUM][4], SPVertex * spVtx)
{
f32 intensity = 0.0f;
for (int j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v + j];
vtx.HWLight = 0;
vtx.r = gSP.lights.rgb[gSP.numLights][R];
vtx.g = gSP.lights.rgb[gSP.numLights][G];
vtx.b = gSP.lights.rgb[gSP.numLights][B];
gSPTransformVector(_vecPos[j], gSP.matrix.modelView[gSP.matrix.modelViewi]);
for (u32 l = 0; l < gSP.numLights; ++l) {
if (gSP.lights.ca[l] != 0.0f) {
f32 recip = FIXED2FLOATRECIP16;
// Point lighting
f32 lvec[3] = { gSP.lights.pos_xyzw[l][X], gSP.lights.pos_xyzw[l][Y], gSP.lights.pos_xyzw[l][Z] };
lvec[0] -= _vecPos[j][0];
lvec[1] -= _vecPos[j][1];
lvec[2] -= _vecPos[j][2];
const f32 K = lvec[0] * lvec[0] + lvec[1] * lvec[1] + lvec[2] * lvec[2] * 2.0f;
const f32 KS = sqrtf(K);
gSPInverseTransformVector(lvec, gSP.matrix.modelView[gSP.matrix.modelViewi]);
for (u32 i = 0; i < 3; ++i) {
lvec[i] = (4.0f * lvec[i] / KS);
if (lvec[i] < -1.0f)
lvec[i] = -1.0f;
if (lvec[i] > 1.0f)
lvec[i] = 1.0f;
}
f32 V = lvec[0] * vtx.nx + lvec[1] * vtx.ny + lvec[2] * vtx.nz;
if (V < -1.0f)
V = -1.0f;
if (V > 1.0f)
V = 1.0f;
const f32 KSF = floorf(KS);
const f32 D = (KSF * gSP.lights.la[l] * 2.0f + KSF * KSF * gSP.lights.qa[l] / 8.0f) * recip + 1.0f;
intensity = V / D;
} else {
// Standard lighting
intensity = DotProduct(&vtx.nx, gSP.lights.i_xyz[l]);
}
if (intensity > 0.0f) {
vtx.r += gSP.lights.rgb[l][R] * intensity;
vtx.g += gSP.lights.rgb[l][G] * intensity;
vtx.b += gSP.lights.rgb[l][B] * intensity;
}
}
if (vtx.r > 1.0f) vtx.r = 1.0f;
if (vtx.g > 1.0f) vtx.g = 1.0f;
if (vtx.b > 1.0f) vtx.b = 1.0f;
}
}
template <u32 VNUM>
void gSPPointLightVertex(u32 _v, float _vecPos[VNUM][4], SPVertex * _spVtx)
{
if (g_ConkerUcode) {
if (gSP.cbfd.advancedLighting)
gSPLightVertexCBFD_advanced<VNUM>(_v, _spVtx);
else
gSPLightVertexCBFD_basic<VNUM>(_v, _spVtx);
} else
gSPPointLightVertexZeldaMM<VNUM>(_v, _vecPos, _spVtx);
}
template <u32 VNUM>
void gSPPointLightVertexAcclaim(u32 v, SPVertex * spVtx)
{
for (int j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v + j];
vtx.HWLight = 0;
for (u32 l = 2; l < 10; ++l) {
if (gSP.lights.ca[l] < 0)
continue;
const f32 dX = fabsf(gSP.lights.pos_xyzw[l][X] - vtx.x);
const f32 dY = fabsf(gSP.lights.pos_xyzw[l][Y] - vtx.y);
const f32 dZ = fabsf(gSP.lights.pos_xyzw[l][Z] - vtx.z);
const f32 distance = dX + dY + dZ - gSP.lights.ca[l];
if (distance >= 0.0f)
continue;
const f32 light_intensity = -distance * gSP.lights.la[l];
vtx.r += gSP.lights.rgb[l][R] * light_intensity;
vtx.g += gSP.lights.rgb[l][G] * light_intensity;
vtx.b += gSP.lights.rgb[l][B] * light_intensity;
}
if (vtx.r > 1.0f) vtx.r = 1.0f;
if (vtx.g > 1.0f) vtx.g = 1.0f;
if (vtx.b > 1.0f) vtx.b = 1.0f;
}
}
template <u32 VNUM>
void gSPBillboardVertex(u32 v, SPVertex * spVtx)
{
#ifndef __NEON_OPT
SPVertex & vtx0 = spVtx[0];
for (u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v + j];
vtx.x += vtx0.x;
vtx.y += vtx0.y;
vtx.z += vtx0.z;
vtx.w += vtx0.w;
}
#else
if (VNUM == 1) {
SPVertex & vtx0 = spVtx[0];
SPVertex & vtx = spVtx[v];
vtx.x += vtx0.x;
vtx.y += vtx0.y;
vtx.z += vtx0.z;
vtx.w += vtx0.w;
} else {
void gSPBillboardVertex4NEON(u32 v);
gSPBillboardVertex4NEON(v);
}
#endif //__NEON_OPT
}
template <u32 VNUM>
void gSPClipVertex(u32 v, SPVertex * spVtx)
{
const f32 scale = dwnd().getAdjustScale();
for (u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[v+j];
vtx.clip = 0;
const f32 scaledX = vtx.x * scale;
if (scaledX > +vtx.w) vtx.clip |= CLIP_POSX;
if (scaledX < -vtx.w) vtx.clip |= CLIP_NEGX;
if (vtx.y > +vtx.w) vtx.clip |= CLIP_POSY;
if (vtx.y < -vtx.w) vtx.clip |= CLIP_NEGY;
if (vtx.w < 0.01f) vtx.clip |= CLIP_W;
}
}
template <u32 VNUM>
void gSPTransformVertex(u32 v, SPVertex * spVtx, float mtx[4][4])
{
#ifndef __NEON_OPT
float x, y, z;
for (int i = 0; i < VNUM; ++i) {
SPVertex & vtx = spVtx[v+i];
x = vtx.x;
y = vtx.y;
z = vtx.z;
vtx.x = x * mtx[0][0] + y * mtx[1][0] + z * mtx[2][0] + mtx[3][0];
vtx.y = x * mtx[0][1] + y * mtx[1][1] + z * mtx[2][1] + mtx[3][1];
vtx.z = x * mtx[0][2] + y * mtx[1][2] + z * mtx[2][2] + mtx[3][2];
vtx.w = x * mtx[0][3] + y * mtx[1][3] + z * mtx[2][3] + mtx[3][3];
}
#else
void gSPTransformVector_NEON(float vtx[4], float mtx[4][4]);
void gSPTransformVertex4NEON(u32 v, float mtx[4][4]);
if (VNUM == 1)
gSPTransformVector_NEON(&spVtx[v].x, mtx);
else
gSPTransformVertex4NEON(v, mtx);
#endif //__NEON_OPT
}
template <u32 VNUM>
void gSPProcessVertex(u32 v, SPVertex * spVtx)
{
if (gSP.changed & CHANGED_MATRIX)
_gSPCombineMatrices();
float vPos[VNUM][4];
for(u32 i = 0; i < VNUM; ++i) {
SPVertex & vtx = spVtx[v+i];
vPos[i][0] = vtx.x;
vPos[i][1] = vtx.y;
vPos[i][2] = vtx.z;
vPos[i][3] = 0.0f;
vtx.modify = 0;
}
gSPTransformVertex<VNUM>(v, spVtx, gSP.matrix.combined );
if (gSP.matrix.billboard)
gSPBillboardVertex<VNUM>(v, spVtx);
gSPClipVertex<VNUM>(v, spVtx);
if (gSP.geometryMode & G_LIGHTING) {
if (gSP.geometryMode & G_POINT_LIGHTING)
gSPPointLightVertex<VNUM>(v, vPos, spVtx);
else
gSPLightVertex<VNUM>(v, spVtx);
if (gSP.geometryMode & G_ACCLAIM_LIGHTING)
gSPPointLightVertexAcclaim<VNUM>(v, spVtx);
if ((gSP.geometryMode & G_TEXTURE_GEN) != 0) {
if (GBI.getMicrocodeType() != F3DFLX2) {
for(int i = 0; i < VNUM; ++i) {
SPVertex & vtx = spVtx[v+i];
f32 vNormale[3] = {vtx.nx, vtx.ny, vtx.nz};
f32 x, y;
if (gSP.lookatEnable) {
x = DotProduct(gSP.lookat.i_xyz[0], vNormale);
y = DotProduct(gSP.lookat.i_xyz[1], vNormale);
} else {
vNormale[0] *= 128.0f;
vNormale[1] *= 128.0f;
vNormale[2] *= 128.0f;
TransformVectorNormalize(vNormale, gSP.matrix.modelView[gSP.matrix.modelViewi]);
x = vNormale[0];
y = vNormale[1];
}
if (gSP.geometryMode & G_TEXTURE_GEN_LINEAR) {
if (x < -1.0f) x = -1.0f;
if (x > 1.0f) x = 1.0f;
if (y < -1.0f) y = -1.0f;
if (y > 1.0f) y = 1.0f;
vtx.s = acosf(-x) * 325.94931f;
vtx.t = acosf(-y) * 325.94931f;
} else {
vtx.s = (x + 1.0f) * 512.0f;
vtx.t = (y + 1.0f) * 512.0f;
}
}
} else {
for(int i = 0; i < VNUM; ++i) {
SPVertex & vtx = spVtx[v+i];
const f32 intensity = DotProduct(gSP.lookat.i_xyz[0], &vtx.nx) * 128.0f;
const s16 index = static_cast<s16>(intensity);
vtx.a = _FIXED2FLOATCOLOR(RDRAM[(gSP.DMAIO_address + 128 + index) ^ 3], 8);
}
}
}
} else if (gSP.geometryMode & G_ACCLAIM_LIGHTING) {
gSPPointLightVertexAcclaim<VNUM>(v, spVtx);
} else {
for(u32 i = 0; i < VNUM; ++i)
spVtx[v].HWLight = 0;
}
for(u32 i = 0; i < VNUM; ++i) {
SPVertex & vtx = spVtx[v+i];
DebugMsg(DEBUG_DETAIL, "v%d - x: %f, y: %f, z: %f, w: %f, s: %f, t: %f, r=%02f, g=%02f, b=%02f, a=%02f\n",
i, vtx.x, vtx.y, vtx.z, vtx.w, vtx.s, vtx.t, vtx.r, vtx.g, vtx.b, vtx.a);
}
}
template <u32 VNUM>
u32 gSPLoadVertexData(const Vertex *orgVtx, SPVertex * spVtx, u32 v0, u32 vi, u32 n)
{
const u32 end = n - (n%VNUM) + v0;
for (; vi < end; vi += VNUM) {
for(u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[vi+j];
vtx.x = orgVtx->x;
vtx.y = orgVtx->y;
vtx.z = orgVtx->z;
//vtx.flag = vertex->flag;
vtx.s = _FIXED2FLOAT( orgVtx->s, 5 );
vtx.t = _FIXED2FLOAT( orgVtx->t, 5 );
if (gSP.geometryMode & G_LIGHTING) {
vtx.nx = _FIXED2FLOATCOLOR(orgVtx->normal.x, 7);
vtx.ny = _FIXED2FLOATCOLOR(orgVtx->normal.y, 7);
vtx.nz = _FIXED2FLOATCOLOR(orgVtx->normal.z, 7);
if (isHWLightingAllowed()) {
vtx.r = orgVtx->normal.x;
vtx.g = orgVtx->normal.y;
vtx.b = orgVtx->normal.z;
}
} else {
vtx.r = _FIXED2FLOATCOLOR(orgVtx->color.r, 8);
vtx.g = _FIXED2FLOATCOLOR(orgVtx->color.g, 8);
vtx.b = _FIXED2FLOATCOLOR(orgVtx->color.b, 8);
}
vtx.a = _FIXED2FLOATCOLOR(orgVtx->color.a, 8);
++orgVtx;
}
gSPProcessVertex<VNUM>(vi, spVtx);
}
return vi;
}
void gSPVertex(u32 a, u32 n, u32 v0)
{
DebugMsg(DEBUG_NORMAL, "gSPVertex n = %i, v0 = %i, from %08x\n", n, v0, a);
if ((n + v0) > INDEXMAP_SIZE) {
LOG(LOG_ERROR, "Using Vertex outside buffer v0=%i, n=%i", v0, n);
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "//Using Vertex outside buffer v0 = %i, n = %i\n", v0, n);
return;
}
const word address = RSP_SegmentToPhysical(a);
if ((address + sizeof(Vertex)* n) > RDRAMSize) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "gSPVertex Using Vertex outside RDRAM n = %i, v0 = %i, from %08x\n", n, v0, a);
return;
}
if ((gSP.geometryMode & G_LIGHTING) != 0) {
if ((gSP.changed & CHANGED_LIGHT) != 0)
gSPUpdateLightVectors();
if (((gSP.geometryMode & G_TEXTURE_GEN) != 0) && ((gSP.changed & CHANGED_LOOKAT) != 0))
gSPUpdateLookatVectors();
}
const Vertex *vertex = (Vertex*)&RDRAM[address];
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
u32 i = gSPLoadVertexData<VEC_OPT>(vertex, spVtx, v0, v0, n);
if (i < n + v0)
gSPLoadVertexData<1>(vertex + (i - v0), spVtx, v0, i, n);
}
template <u32 VNUM>
u32 gSPLoadCIVertexData(const PDVertex *orgVtx, SPVertex * spVtx, u32 v0, u32 vi, u32 n)
{
const u32 end = n - (n%VNUM) + v0;
for (; vi < end; vi += VNUM) {
for(u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[vi+j];
vtx.x = orgVtx->x;
vtx.y = orgVtx->y;
vtx.z = orgVtx->z;
vtx.s = _FIXED2FLOAT( orgVtx->s, 5 );
vtx.t = _FIXED2FLOAT( orgVtx->t, 5 );
u8 *color = &RDRAM[gSP.vertexColorBase + (orgVtx->ci & 0xff)];
if (gSP.geometryMode & G_LIGHTING) {
vtx.nx = _FIXED2FLOATCOLOR((s8)color[3], 7);
vtx.ny = _FIXED2FLOATCOLOR((s8)color[2], 7);
vtx.nz = _FIXED2FLOATCOLOR((s8)color[1], 7);
if (isHWLightingAllowed()) {
vtx.r = (s8)color[3];
vtx.g = (s8)color[2];
vtx.b = (s8)color[1];
}
} else {
vtx.r = _FIXED2FLOATCOLOR(color[3], 8);
vtx.g = _FIXED2FLOATCOLOR(color[2], 8);
vtx.b = _FIXED2FLOATCOLOR(color[1], 8);
}
vtx.a = _FIXED2FLOATCOLOR(color[0], 8);
++orgVtx;
}
gSPProcessVertex<VNUM>(vi, spVtx);
}
return vi;
}
void gSPCIVertex( u32 a, u32 n, u32 v0 )
{
DebugMsg(DEBUG_NORMAL, "gSPCIVertex n = %i, v0 = %i, from %08x\n", n, v0, a);
if ((n + v0) > INDEXMAP_SIZE) {
LOG(LOG_ERROR, "Using Vertex outside buffer v0=%i, n=%i", v0, n);
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "//Using Vertex outside buffer v0 = %i, n = %i\n", v0, n);
return;
}
const word address = RSP_SegmentToPhysical( a );
if ((address + sizeof( PDVertex ) * n) > RDRAMSize)
return;
if ((gSP.geometryMode & G_LIGHTING) != 0) {
if ((gSP.changed & CHANGED_LIGHT) != 0)
gSPUpdateLightVectors();
if (((gSP.geometryMode & G_TEXTURE_GEN) != 0) && ((gSP.changed & CHANGED_LOOKAT) != 0))
gSPUpdateLookatVectors();
}
const PDVertex *vertex = (PDVertex*)&RDRAM[address];
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
u32 i = gSPLoadCIVertexData<VEC_OPT>(vertex, spVtx, v0, v0, n);
if (i < n + v0)
gSPLoadCIVertexData<1>(vertex + (i - v0), spVtx, v0, i, n);
}
template <u32 VNUM>
u32 gSPLoadDMAVertexData(word address, SPVertex * spVtx, u32 v0, u32 vi, u32 n)
{
const u32 end = n - (n%VNUM) + v0;
for (; vi < end; vi += VNUM) {
for(u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[vi+j];
vtx.x = *(s16*)&RDRAM[address ^ 2];
vtx.y = *(s16*)&RDRAM[(address + 2) ^ 2];
vtx.z = *(s16*)&RDRAM[(address + 4) ^ 2];
vtx.r = _FIXED2FLOATCOLOR((*(u8*)&RDRAM[(address + 6) ^ 3]), 8);
vtx.g = _FIXED2FLOATCOLOR((*(u8*)&RDRAM[(address + 7) ^ 3]), 8);
vtx.b = _FIXED2FLOATCOLOR((*(u8*)&RDRAM[(address + 8) ^ 3]), 8);
vtx.a = _FIXED2FLOATCOLOR((*(u8*)&RDRAM[(address + 9) ^ 3]), 8);
address += 10;
}
gSPProcessVertex<VNUM>(vi, spVtx);
}
return vi;
}
void gSPDMAVertex( u32 a, u32 n, u32 v0 )
{
DebugMsg(DEBUG_NORMAL, "gSPDMAVertex n = %i, v0 = %i, from %08x\n", n, v0, a);
if ((n + v0) > INDEXMAP_SIZE) {
LOG(LOG_ERROR, "Using Vertex outside buffer v0=%i, n=%i", v0, n);
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "//Using Vertex outside buffer v0 = %i, n = %i\n", v0, n);
return;
}
const word address = gSP.DMAOffsets.vtx + RSP_SegmentToPhysical(a);
if ((address + 10 * n) > RDRAMSize)
return;
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
u32 i = gSPLoadDMAVertexData<VEC_OPT>(address, spVtx, v0, v0, n);
if (i < n + v0)
gSPLoadDMAVertexData<1>(address + (i - v0) * 10, spVtx, v0, i, n);
}
template <u32 VNUM>
u32 gSPLoadCBFDVertexData(const Vertex *orgVtx, SPVertex * spVtx, u32 v0, u32 vi, u32 n)
{
const u32 end = n - (n%VNUM) + v0;
for (; vi < end; vi += VNUM) {
for(u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[vi+j];
vtx.x = orgVtx->x;
vtx.y = orgVtx->y;
vtx.z = orgVtx->z;
vtx.s = _FIXED2FLOAT( orgVtx->s, 5 );
vtx.t = _FIXED2FLOAT( orgVtx->t, 5 );
vtx.flag = orgVtx->flag;
if (gSP.geometryMode & G_LIGHTING) {
const u32 normaleAddrOffset = ((vi+j)<<1);
vtx.nx = _FIXED2FLOATCOLOR(((s8*)RDRAM)[(gSP.cbfd.vertexNormalBase + normaleAddrOffset + 0) ^ 3], 7);
vtx.ny = _FIXED2FLOATCOLOR(((s8*)RDRAM)[(gSP.cbfd.vertexNormalBase + normaleAddrOffset + 1) ^ 3], 7);
vtx.nz = _FIXED2FLOATCOLOR((s8)(orgVtx->flag & 0xFF), 7);
}
vtx.r = _FIXED2FLOATCOLOR(orgVtx->color.r, 8);
vtx.g = _FIXED2FLOATCOLOR(orgVtx->color.g, 8);
vtx.b = _FIXED2FLOATCOLOR(orgVtx->color.b, 8);
vtx.a = _FIXED2FLOATCOLOR(orgVtx->color.a, 8);
++orgVtx;
}
gSPProcessVertex<VNUM>(vi, spVtx);
}
return vi;
}
void gSPCBFDVertex( u32 a, u32 n, u32 v0 )
{
DebugMsg(DEBUG_NORMAL, "gSPCBFDVertex n = %i, v0 = %i, from %08x\n", n, v0, a);
if ((n + v0) > INDEXMAP_SIZE) {
LOG(LOG_ERROR, "Using Vertex outside buffer v0=%i, n=%i", v0, n);
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "//Using Vertex outside buffer v0 = %i, n = %i\n", v0, n);
return;
}
const word address = RSP_SegmentToPhysical(a);
if ((address + sizeof( Vertex ) * n) > RDRAMSize)
return;
if ((gSP.geometryMode & G_LIGHTING) != 0) {
if ((gSP.changed & CHANGED_LIGHT) != 0)
gSPUpdateLightVectors();
if (((gSP.geometryMode & G_TEXTURE_GEN) != 0) && ((gSP.changed & CHANGED_LOOKAT) != 0))
gSPUpdateLookatVectors();
}
const Vertex *vertex = (Vertex*)&RDRAM[address];
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
u32 i = gSPLoadCBFDVertexData<VEC_OPT>(vertex, spVtx, v0, v0, n);
if (i < n + v0)
gSPLoadCBFDVertexData<1>(vertex + (i - v0), spVtx, v0, i, n);
}
static
void calcF3DAMTexCoords(const Vertex * _vertex, SPVertex & _vtx)
{
const u32 s0 = (u32)_vertex->s;
const u32 t0 = (u32)_vertex->t;
const u32 acum_0 = ((_SHIFTR(gSP.textureCoordScaleOrg, 0, 16) * t0) << 1) + 0x8000;
const u32 acum_1 = ((_SHIFTR(gSP.textureCoordScale[1], 0, 16) * t0) << 1) + 0x8000;
const u32 sres = ((_SHIFTR(gSP.textureCoordScaleOrg, 16, 16) * s0) << 1) + acum_0;
const u32 tres = ((_SHIFTR(gSP.textureCoordScale[1], 16, 16) * s0) << 1) + acum_1;
const s16 s = _SHIFTR(sres, 16, 16) + _SHIFTR(gSP.textureCoordScale[0], 16, 16);
const s16 t = _SHIFTR(tres, 16, 16) + _SHIFTR(gSP.textureCoordScale[0], 0, 16);
_vtx.s = _FIXED2FLOAT( s, 5 );
_vtx.t = _FIXED2FLOAT( t, 5 );
}
template <u32 VNUM>
u32 gSPLoadF3DAMVertexData(const Vertex *orgVtx, SPVertex * spVtx, u32 v0, u32 vi, u32 n)
{
const u32 end = n - (n%VNUM) + v0;
for (; vi < end; vi += VNUM) {
for(u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[vi+j];
vtx.x = orgVtx->x;
vtx.y = orgVtx->y;
vtx.z = orgVtx->z;
//vtx.flag = orgVtx->flag;
calcF3DAMTexCoords(orgVtx, vtx);
if (gSP.geometryMode & G_LIGHTING) {
vtx.nx = _FIXED2FLOATCOLOR( orgVtx->normal.x, 7 );
vtx.ny = _FIXED2FLOATCOLOR( orgVtx->normal.y, 7 );
vtx.nz = _FIXED2FLOATCOLOR( orgVtx->normal.z, 7 );
vtx.a = _FIXED2FLOATCOLOR(orgVtx->color.a,8);
} else {
vtx.r = _FIXED2FLOATCOLOR(orgVtx->color.r,8);
vtx.g = _FIXED2FLOATCOLOR(orgVtx->color.g,8);
vtx.b = _FIXED2FLOATCOLOR(orgVtx->color.b,8);
vtx.a = _FIXED2FLOATCOLOR(orgVtx->color.a,8);
}
++orgVtx;
}
gSPProcessVertex<VNUM>(vi, spVtx);
}
return vi;
}
void gSPF3DAMVertex(u32 a, u32 n, u32 v0)
{
DebugMsg(DEBUG_NORMAL, "gSPF3DAMVertex n = %i, v0 = %i, from %08x\n", n, v0, a);
if ((n + v0) > INDEXMAP_SIZE) {
LOG(LOG_ERROR, "Using Vertex outside buffer v0=%i, n=%i", v0, n);
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "//Using Vertex outside buffer v0 = %i, n = %i\n", v0, n);
return;
}
const word address = RSP_SegmentToPhysical(a);
if ((address + sizeof(Vertex)* n) > RDRAMSize) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "gSPF3DAMVertex Using Vertex outside RDRAM n = %i, v0 = %i, from %08x\n", n, v0, a);
return;
}
if ((gSP.geometryMode & G_LIGHTING) != 0) {
if ((gSP.changed & CHANGED_LIGHT) != 0)
gSPUpdateLightVectors();
if (((gSP.geometryMode & G_TEXTURE_GEN) != 0) && ((gSP.changed & CHANGED_LOOKAT) != 0))
gSPUpdateLookatVectors();
}
const Vertex *vertex = (Vertex*)&RDRAM[address];
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
u32 i = gSPLoadF3DAMVertexData<VEC_OPT>(vertex, spVtx, v0, v0, n);
if (i < n + v0)
gSPLoadF3DAMVertexData<1>(vertex + (i - v0), spVtx, v0, i, n);
}
template <u32 VNUM>
u32 gSPLoadSWVertexData(const SWVertex *orgVtx, SPVertex * spVtx, u32 vi, u32 n)
{
const u32 end = n - (n%VNUM);
for (; vi < end; vi += VNUM) {
for(u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[vi+j];
vtx.x = orgVtx->x;
vtx.y = orgVtx->y;
vtx.z = orgVtx->z;
++orgVtx;
}
gSPProcessVertex<VNUM>(vi, spVtx);
for (u32 j = 0; j < VNUM; ++j) {
SPVertex & vtx = spVtx[vi+j];
vtx.y = -vtx.y;
}
}
return vi;
}
void gSPSWVertex(const SWVertex * vertex, u32 n, const bool * const verticesToProcess)
{
DebugMsg(DEBUG_NORMAL, "gSPSWVertex n = %i\n", n);
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
if (verticesToProcess == nullptr) {
u32 i = gSPLoadSWVertexData<VEC_OPT>(vertex, spVtx, 0, n);
if (i < n)
gSPLoadSWVertexData<1>(vertex + i, spVtx, i, n);
} else {
for (u32 i = 0; i < n; ++i) {
if (verticesToProcess[i])
gSPLoadSWVertexData<1>(vertex + i, spVtx, i, i + 1);
}
}
}
void gSPSWVertex(const SWVertex * vertex, u32 v0, u32 n)
{
DebugMsg(DEBUG_NORMAL, "gSPSWVertex v0 = %i, n = %i\n", v0, n);
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
const u32 endIdx = v0 + n;
u32 i = gSPLoadSWVertexData<VEC_OPT>(vertex, spVtx, v0, endIdx);
if (i < endIdx)
gSPLoadSWVertexData<1>(vertex + i - v0, spVtx, i, endIdx);
}
void gSPT3DUXVertex(u32 a, u32 n, u32 ci)
{
const word address = RSP_SegmentToPhysical(a);
const u32 colors = RSP_SegmentToPhysical(ci);
struct T3DUXVertex {
s16 y;
s16 x;
u16 flag;
s16 z;
} *vertex = (T3DUXVertex*)&RDRAM[address];
struct T3DUXColor
{
u8 a;
u8 b;
u8 g;
u8 r;
} *color = (T3DUXColor*)&RDRAM[colors];
if ((address + sizeof(T3DUXVertex)* n) > RDRAMSize)
return;
SPVertex * spVtx = dwnd().getDrawer().getVertexPtr(0);
u32 i = 0;
#ifdef __VEC4_OPT
for (; i < n - (n % 4); i += 4) {
u32 v = i;
for (int j = 0; j < 4; ++j) {
SPVertex & vtx = spVtx[v+j];
vtx.x = vertex->x;
vtx.y = vertex->y;
vtx.z = vertex->z;
vtx.s = 0;
vtx.t = 0;
vtx.r = _FIXED2FLOATCOLOR(color->r, 8);
vtx.g = _FIXED2FLOATCOLOR(color->g, 8);
vtx.b = _FIXED2FLOATCOLOR(color->b, 8);
vtx.a = _FIXED2FLOATCOLOR(color->a, 8);
vertex++;
color++;
}
gSPProcessVertex<4>(v, spVtx);
}
#endif
for (; i < n; ++i) {
SPVertex & vtx = spVtx[i];
vtx.x = vertex->x;
vtx.y = vertex->y;
vtx.z = vertex->z;
vtx.s = 0;
vtx.t = 0;
vtx.r = _FIXED2FLOATCOLOR(color->r, 8);
vtx.g = _FIXED2FLOATCOLOR(color->g, 8);
vtx.b = _FIXED2FLOATCOLOR(color->b, 8);
vtx.a = _FIXED2FLOATCOLOR(color->a, 8);
gSPProcessVertex<1>(i, spVtx);
vertex++;
color++;
}
}
void gSPDisplayList( word dl )
{
word address = RSP_SegmentToPhysical( dl );
#ifndef NATIVE
if ((address + sizeof(Gwords)) > RDRAMSize) {
#else
if (!address || (address + sizeof(Gwords)) > RDRAMSize) {
#endif
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load display list from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPDisplayList( 0x%08X );\n", dl );
return;
}
if (RSP.PCi < (GBI.PCStackSize - 1)) {
DebugMsg(DEBUG_NORMAL, "gSPDisplayList( 0x%08X ) push\n", dl);
RSP.PCi++;
RSP.PC[RSP.PCi] = address;
RSP.nextCmd = _SHIFTR( *(u32*)&RDRAM[address], 24, 8 );
} else {
assert(false);
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// PC stack overflow\n");
DebugMsg(DEBUG_NORMAL, "gSPDisplayList( 0x%08X );\n", dl );
}
}
void gSPBranchList( word dl )
{
word address = RSP_SegmentToPhysical( dl );
if ((address + sizeof(Gwords)) > RDRAMSize) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to branch to display list at invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPBranchList( 0x%08X );\n", dl );
return;
}
DebugMsg(DEBUG_NORMAL, "gSPBranchList( 0x%08X ) nopush\n", dl );
if (address == (RSP.PC[RSP.PCi] - sizeof(Gwords))) {
RSP.infloop = true;
RSP.PC[RSP.PCi] -= sizeof(Gwords);
RSP.halt = true;
return;
}
RSP.PC[RSP.PCi] = address;
RSP.nextCmd = _SHIFTR( *(word*)&RDRAM[address], 24, 8 );
}
void gSPBranchLessZ(word branchdl, u32 vtx, u32 zval)
{
const word address = RSP_SegmentToPhysical( branchdl );
if ((address + sizeof(Gwords)) > RDRAMSize) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Specified display list at invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPBranchLessZ( 0x%08X, %i, %i );\n", branchdl, vtx, zval );
return;
}
SPVertex & v = dwnd().getDrawer().getVertex(vtx);
const u32 zTest = u32((v.z / v.w) * 1023.0f);
if (zTest > 0x03FF || zTest <= zval)
RSP.PC[RSP.PCi] = address;
DebugMsg(DEBUG_NORMAL, "gSPBranchLessZ( 0x%08X, %i, %i );\n", branchdl, vtx, zval );
}
void gSPBranchLessW( word branchdl, u32 vtx, u32 wval )
{
const word address = RSP_SegmentToPhysical( branchdl );
if ((address + sizeof(Gwords)) > RDRAMSize) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Specified display list at invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPBranchLessW( 0x%08X, %i, %i );\n", branchdl, vtx, wval);
return;
}
SPVertex & v = dwnd().getDrawer().getVertex(vtx);
if (v.w < (float)wval)
RSP.PC[RSP.PCi] = address;
DebugMsg(DEBUG_NORMAL, "gSPBranchLessZ( 0x%08X, %i, %i );\n", branchdl, vtx, wval);
}
void gSPDlistCount(u32 count, u32 v)
{
word address = RSP_SegmentToPhysical( v );
if (address == 0 || (address + sizeof(Gwords)) > RDRAMSize) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to branch to display list at invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPDlistCnt(%d, 0x%08X );\n", count, v);
return;
}
if (RSP.PCi >= 9) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// ** DL stack overflow **\n");
DebugMsg(DEBUG_NORMAL, "gSPDlistCnt(%d, 0x%08X );\n", count, v);
return;
}
DebugMsg(DEBUG_NORMAL, "gSPDlistCnt(%d, 0x%08X );\n", count, v);
++RSP.PCi; // go to the next PC in the stack
RSP.PC[RSP.PCi] = address; // jump to the address
RSP.nextCmd = _SHIFTR( *(word*)&RDRAM[address], 24, 8 );
RSP.count = count + 1;
}
void gSPSetDMAOffsets( u32 mtxoffset, u32 vtxoffset )
{
gSP.DMAOffsets.mtx = mtxoffset;
gSP.DMAOffsets.vtx = vtxoffset;
DebugMsg(DEBUG_NORMAL, "gSPSetDMAOffsets( 0x%08X, 0x%08X );\n", mtxoffset, vtxoffset );
}
void gSPSetDMATexOffset(u32 _addr)
{
gSP.DMAOffsets.tex_offset = RSP_SegmentToPhysical(_addr);
gSP.DMAOffsets.tex_shift = 0;
gSP.DMAOffsets.tex_count = 0;
}
void gSPSetVertexColorBase( u32 base )
{
gSP.vertexColorBase = RSP_SegmentToPhysical( base );
DebugMsg(DEBUG_NORMAL, "gSPSetVertexColorBase( 0x%08X );\n", base );
}
void gSPDMATriangles( u32 tris, u32 n ){
const word address = RSP_SegmentToPhysical( tris );
if (address + sizeof( DKRTriangle ) * n > RDRAMSize) {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to load triangles from invalid address\n");
DebugMsg(DEBUG_NORMAL, "gSPDMATriangles( 0x%08X, %i );\n");
return;
}
GraphicsDrawer & drawer = dwnd().getDrawer();
drawer.setDMAVerticesSize(n * 3);
DKRTriangle *triangles = (DKRTriangle*)&RDRAM[address];
SPVertex * pVtx = drawer.getDMAVerticesData();
for (u32 i = 0; i < n; ++i) {
int mode = 0;
if (!(triangles->flag & 0x40)) {
if (gSP.viewport.vscale[0] > 0)
mode |= G_CULL_BACK;
else
mode |= G_CULL_FRONT;
}
if ((gSP.geometryMode&G_CULL_BOTH) != mode) {
drawer.drawDMATriangles(static_cast<u32>(pVtx - drawer.getDMAVerticesData()));
pVtx = drawer.getDMAVerticesData();
gSP.geometryMode &= ~G_CULL_BOTH;
gSP.geometryMode |= mode;
gSP.changed |= CHANGED_GEOMETRYMODE;
}
const s32 v0 = triangles->v0;
const s32 v1 = triangles->v1;
const s32 v2 = triangles->v2;
if (drawer.isClipped(v0, v1, v2)) {
++triangles;
continue;
}
*pVtx = drawer.getVertex(v0);
pVtx->s = _FIXED2FLOAT(triangles->s0, 5);
pVtx->t = _FIXED2FLOAT(triangles->t0, 5);
++pVtx;
*pVtx = drawer.getVertex(v1);
pVtx->s = _FIXED2FLOAT(triangles->s1, 5);
pVtx->t = _FIXED2FLOAT(triangles->t1, 5);
++pVtx;
*pVtx = drawer.getVertex(v2);
pVtx->s = _FIXED2FLOAT(triangles->s2, 5);
pVtx->t = _FIXED2FLOAT(triangles->t2, 5);
++pVtx;
++triangles;
}
DebugMsg(DEBUG_NORMAL, "gSPDMATriangles( 0x%08X, %i );\n");
drawer.drawDMATriangles(static_cast<u32>(pVtx - drawer.getDMAVerticesData()));
}
void gSP1Quadrangle( s32 v0, s32 v1, s32 v2, s32 v3 )
{
gSPTriangle( v0, v1, v2);
gSPTriangle( v0, v2, v3);
gSPFlushTriangles();
DebugMsg(DEBUG_NORMAL, "gSP1Quadrangle( %i, %i, %i, %i );\n", v0, v1, v2, v3 );
}
bool gSPCullVertices( u32 v0, u32 vn )
{
if (vn < v0) {
// Aidyn Chronicles - The First Mage seems to pass parameters in reverse order.
std::swap(v0, vn);
}
u32 clip = 0;
GraphicsDrawer & drawer = dwnd().getDrawer();
for (u32 i = v0; i <= vn; ++i) {
clip |= (~drawer.getVertex(i).clip) & CLIP_ALL;
if (clip == CLIP_ALL)
return false;
}
return true;
}
void gSPCullDisplayList( u32 v0, u32 vn )
{
if (gSPCullVertices( v0, vn )) {
if (RSP.PCi > 0)
RSP.PCi--;
else {
DebugMsg(DEBUG_NORMAL, "End of display list, halting execution\n");
RSP.halt = true;
}
DebugMsg( DEBUG_DETAIL, "// Culling display list\n" );
DebugMsg(DEBUG_NORMAL, "gSPCullDisplayList( %i, %i );\n\n", v0, vn );
} else {
DebugMsg( DEBUG_DETAIL, "// Not culling display list\n" );
DebugMsg(DEBUG_NORMAL, "gSPCullDisplayList( %i, %i );\n", v0, vn);
}
}
void gSPPopMatrixN(u32 param, u32 num)
{
if (gSP.matrix.modelViewi > num - 1) {
gSP.matrix.modelViewi -= num;
gSP.changed |= CHANGED_MATRIX | CHANGED_LIGHT | CHANGED_LOOKAT;
} else {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to pop matrix stack below 0\n");
}
DebugMsg(DEBUG_NORMAL, "gSPPopMatrixN( %s, %i );\n",
(param == G_MTX_MODELVIEW) ? "G_MTX_MODELVIEW" :
(param == G_MTX_PROJECTION) ? "G_MTX_PROJECTION" : "G_MTX_INVALID", num );
}
void gSPPopMatrix( u32 param )
{
switch (param) {
case 0: // modelview
if (gSP.matrix.modelViewi > 0) {
gSP.matrix.modelViewi--;
gSP.changed |= CHANGED_MATRIX | CHANGED_LIGHT | CHANGED_LOOKAT;
}
break;
case 1: // projection, can't
break;
default:
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Attempting to pop matrix stack below 0\n");
}
DebugMsg(DEBUG_NORMAL, "gSPPopMatrix( %s );\n",
(param == G_MTX_MODELVIEW) ? "G_MTX_MODELVIEW" :
(param == G_MTX_PROJECTION) ? "G_MTX_PROJECTION" : "G_MTX_INVALID");
}
void gSPSegment( s32 seg, word base )
{
gSP.segment[seg] = base;
DebugMsg(DEBUG_NORMAL, "gSPSegment( %s, 0x%08X );\n", SegmentText[seg], base );
}
void gSPClipRatio(u32 ratio)
{
gSP.clipRatio = std::abs(static_cast<s16>(ratio & 0xFFFF));
gSP.changed |= CHANGED_VIEWPORT;
DebugMsg(DEBUG_NORMAL, "gSPClipRatio(%u);\n", gSP.clipRatio);
}
void gSPInsertMatrix( u32 where, u32 num )
{
DebugMsg(DEBUG_NORMAL, "gSPInsertMatrix(%u, %u);\n", where, num);
if ((where & 0x3) != 0)
return;
f32 * pMtx = nullptr;
u16 addr = (where + 0x80) & 0xFFFF;
if (addr < 0x40) {
pMtx = reinterpret_cast<f32*>(gSP.matrix.modelView[gSP.matrix.modelViewi]);
} else if (addr < 0x80) {
pMtx = reinterpret_cast<f32*>(gSP.matrix.projection);
addr -= 0x40;
} else if (addr < 0xC0) {
pMtx = reinterpret_cast<f32*>(gSP.matrix.combined);
addr -= 0x80;
} else
return;
const u16 * pData = reinterpret_cast<u16*>(&num);
const u32 index = (addr < 0x20) ? (addr >> 1) : ((addr - 0x20) >> 1);
for (u32 i = 0; i < 2; i++) {
if (addr < 0x20) {
// integer elements of the matrix to be changed
const s16 integer = static_cast<s16>(pData[i ^ 1]);
const u16 fract = GetIntMatrixElement(pMtx[index + i]).second;
pMtx[index + i] = GetFloatMatrixElement(integer, fract);
} else {
// fractional elements of the matrix to be changed
const s16 integer = GetIntMatrixElement(pMtx[index + i]).first;
const u16 fract = pData[i ^ 1];
pMtx[index + i] = GetFloatMatrixElement(integer, fract);
}
}
}
void gSPModifyVertex( u32 _vtx, u32 _where, u32 _val )
{
GraphicsDrawer & drawer = dwnd().getDrawer();
SPVertex & vtx0 = drawer.getVertex(_vtx);
switch (_where) {
case G_MWO_POINT_RGBA:
vtx0.r = _FIXED2FLOATCOLOR(_SHIFTR( _val, 24, 8 ),8);
vtx0.g = _FIXED2FLOATCOLOR(_SHIFTR( _val, 16, 8 ),8);
vtx0.b = _FIXED2FLOATCOLOR(_SHIFTR( _val, 8, 8 ),8);
vtx0.a = _FIXED2FLOATCOLOR(_SHIFTR( _val, 0, 8 ),8);
vtx0.modify |= MODIFY_RGBA;
DebugMsg(DEBUG_NORMAL, "gSPModifyVertex: RGBA(%02f, %02f, %02f, %02f);\n", vtx0.r, vtx0.g, vtx0.b, vtx0.a);
break;
case G_MWO_POINT_ST:
vtx0.s = _FIXED2FLOAT( (s16)_SHIFTR( _val, 16, 16 ), 5 ) / gSP.texture.scales;
vtx0.t = _FIXED2FLOAT((s16)_SHIFTR(_val, 0, 16), 5) / gSP.texture.scalet;
//vtx0.modify |= MODIFY_ST; // still neeed to divide by 2 in vertex shader if TexturePersp disabled
DebugMsg(DEBUG_NORMAL, "gSPModifyVertex: ST(%02f, %02f);\n", vtx0.s, vtx0.t);
break;
case G_MWO_POINT_XYSCREEN:
vtx0.x = _FIXED2FLOAT((s16)_SHIFTR(_val, 16, 16), 2);
vtx0.y = _FIXED2FLOAT((s16)_SHIFTR(_val, 0, 16), 2);
vtx0.modify |= MODIFY_XY;
vtx0.clip &= ~(CLIP_POSX | CLIP_NEGX | CLIP_POSY | CLIP_NEGY);
if ((config.generalEmulation.hacks & hack_ModifyVertexXyInShader) == 0) {
if (dwnd().isAdjustScreen()) {
const f32 adjustScale = dwnd().getAdjustScale();
const f32 adjustOffset = static_cast<f32>(VI.width) * (1.0f - adjustScale) / 2.0f;
vtx0.x *= adjustScale;
vtx0.x += adjustOffset;
if (gSP.matrix.projection[3][2] == -1.f)
vtx0.w *= adjustScale;
}
} else {
if (vtx0.w == 0.0f || gDP.otherMode.depthSource == G_ZS_PRIM) {
vtx0.w = 1.0f;
vtx0.clip &= ~(CLIP_W);
}
}
DebugMsg(DEBUG_NORMAL, "gSPModifyVertex: XY(%02f, %02f);\n", vtx0.x, vtx0.y);
break;
case G_MWO_POINT_ZSCREEN:
{
// All 32 bits of _val are the z value (16.11)
f32 scrZ = float(_val) / 65535.0f / 2048.0f;
DebugMsg(DEBUG_NORMAL, "gSPModifyVertex: iZ(0x%08x) Z(%02f);\n", _val, scrZ);
vtx0.z = scrZ;
vtx0.clip &= ~CLIP_W;
vtx0.modify |= MODIFY_Z;
}
break;
}
}
void gSPNumLights( s32 n )
{
if (n < 12) {
gSP.numLights = n;
gSP.changed |= CHANGED_LIGHT;
} else {
DebugMsg(DEBUG_NORMAL | DEBUG_ERROR, "// Setting an invalid number of lights\n");
}
DebugMsg(DEBUG_NORMAL, "gSPNumLights( %i );\n", n);
}
void gSPLightColor( u32 lightNum, u32 packedColor )
{
--lightNum;
if (lightNum < 8)
{
gSP.lights.rgb[lightNum][R] = _FIXED2FLOATCOLOR(_SHIFTR( packedColor, 24, 8 ),8);
gSP.lights.rgb[lightNum][G] = _FIXED2FLOATCOLOR(_SHIFTR( packedColor, 16, 8 ),8);
gSP.lights.rgb[lightNum][B] = _FIXED2FLOATCOLOR(_SHIFTR( packedColor, 8, 8 ),8);
gSP.lights.rgb2[lightNum][R] = gSP.lights.rgb[lightNum][R];
gSP.lights.rgb2[lightNum][G] = gSP.lights.rgb[lightNum][G];
gSP.lights.rgb2[lightNum][B] = gSP.lights.rgb[lightNum][B];
gSP.changed |= CHANGED_HW_LIGHT;
}
DebugMsg(DEBUG_NORMAL, "gSPLightColor( %i, 0x%08X );\n", lightNum, packedColor );
}
void gSPFogFactor( s16 fm, s16 fo )
{
gSP.fog.multiplier = fm;
gSP.fog.offset = fo;
gSP.fog.multiplierf = _FIXED2FLOAT(fm, 8);
gSP.fog.offsetf = _FIXED2FLOAT(fo, 8);
gSP.changed |= CHANGED_FOGPOSITION;
DebugMsg(DEBUG_NORMAL, "gSPFogFactor( %i, %i );\n", fm, fo);
}
void gSPPerspNormalize( u16 scale )
{
DebugMsg(DEBUG_NORMAL| DEBUG_IGNORED, "gSPPerspNormalize( %i );\n", scale);
}
void gSPTexture( f32 sc, f32 tc, u32 level, u32 tile, u32 on )
{
gSP.texture.on = on;
if (on == 0) {
DebugMsg(DEBUG_NORMAL, "gSPTexture skipped b/c of off\n");
return;
}
gSP.texture.scales = sc;
gSP.texture.scalet = tc;
if (gSP.texture.scales == 0.0f) gSP.texture.scales = 1.0f;
if (gSP.texture.scalet == 0.0f) gSP.texture.scalet = 1.0f;
gSP.texture.level = level;
gSP.texture.tile = tile;
gSP.textureTile[0] = &gDP.tiles[tile];
gSP.textureTile[1] = &gDP.tiles[(tile + 1) & 7];
gSP.changed |= CHANGED_TEXTURE;
DebugMsg(DEBUG_NORMAL, "gSPTexture: tile: %d, mipmap_lvl: %d, on: %d, s_scale: %f, t_scale: %f\n", tile, level, on, sc, tc);
}
void gSPEndDisplayList(const Gwords words)
{
const word line = _SHIFTR(words.w0, 0, 24);
const char* file = (const char*)words.w1;
if (RSP.PCi > 0)
--RSP.PCi;
else {
DebugMsg( DEBUG_NORMAL, "End of display list, halting execution\n" );
RSP.halt = true;
}
DebugMsg(DEBUG_NORMAL, "gSPEndDisplayList();\n\n");
if (line && file) {
DebugMsg(DEBUG_NORMAL, "\nLINE %s : %d;\n\n", file, line);
}
}
void gSPGeometryMode( u32 clear, u32 set )
{
gSP.geometryMode = (gSP.geometryMode & ~clear) | set;
gSP.changed |= CHANGED_GEOMETRYMODE;
DebugMsg(DEBUG_NORMAL, "gSPGeometryMode( %s%s%s%s%s%s%s%s%s%s, %s%s%s%s%s%s%s%s%s%s );\n",
clear & G_SHADE ? "G_SHADE | " : "",
clear & G_LIGHTING ? "G_LIGHTING | " : "",
clear & G_SHADING_SMOOTH ? "G_SHADING_SMOOTH | " : "",
clear & G_ZBUFFER ? "G_ZBUFFER | " : "",
clear & G_TEXTURE_GEN ? "G_TEXTURE_GEN | " : "",
clear & G_TEXTURE_GEN_LINEAR ? "G_TEXTURE_GEN_LINEAR | " : "",
clear & G_CULL_FRONT ? "G_CULL_FRONT | " : "",
clear & G_CULL_BACK ? "G_CULL_BACK | " : "",
clear & G_FOG ? "G_FOG | " : "",
clear & G_CLIPPING ? "G_CLIPPING" : "",
set & G_SHADE ? "G_SHADE | " : "",
set & G_LIGHTING ? "G_LIGHTING | " : "",
set & G_SHADING_SMOOTH ? "G_SHADING_SMOOTH | " : "",
set & G_ZBUFFER ? "G_ZBUFFER | " : "",
set & G_TEXTURE_GEN ? "G_TEXTURE_GEN | " : "",
set & G_TEXTURE_GEN_LINEAR ? "G_TEXTURE_GEN_LINEAR | " : "",
set & G_CULL_FRONT ? "G_CULL_FRONT | " : "",
set & G_CULL_BACK ? "G_CULL_BACK | " : "",
set & G_FOG ? "G_FOG | " : "",
set & G_CLIPPING ? "G_CLIPPING" : "" );
}
void gSPSetGeometryMode( u32 mode )
{
gSP.geometryMode |= mode;
gSP.changed |= CHANGED_GEOMETRYMODE;
DebugMsg(DEBUG_NORMAL, "gSPSetGeometryMode( %s%s%s%s%s%s%s%s%s%s );\n",
mode & G_SHADE ? "G_SHADE | " : "",
mode & G_LIGHTING ? "G_LIGHTING | " : "",
mode & G_SHADING_SMOOTH ? "G_SHADING_SMOOTH | " : "",
mode & G_ZBUFFER ? "G_ZBUFFER | " : "",
mode & G_TEXTURE_GEN ? "G_TEXTURE_GEN | " : "",
mode & G_TEXTURE_GEN_LINEAR ? "G_TEXTURE_GEN_LINEAR | " : "",
mode & G_CULL_FRONT ? "G_CULL_FRONT | " : "",
mode & G_CULL_BACK ? "G_CULL_BACK | " : "",
mode & G_FOG ? "G_FOG | " : "",
mode & G_CLIPPING ? "G_CLIPPING" : "" );
}
void gSPClearGeometryMode( u32 mode )
{
gSP.geometryMode &= ~mode;
gSP.changed |= CHANGED_GEOMETRYMODE;
DebugMsg(DEBUG_NORMAL, "gSPClearGeometryMode( %s%s%s%s%s%s%s%s%s%s );\n",
mode & G_SHADE ? "G_SHADE | " : "",
mode & G_LIGHTING ? "G_LIGHTING | " : "",
mode & G_SHADING_SMOOTH ? "G_SHADING_SMOOTH | " : "",
mode & G_ZBUFFER ? "G_ZBUFFER | " : "",
mode & G_TEXTURE_GEN ? "G_TEXTURE_GEN | " : "",
mode & G_TEXTURE_GEN_LINEAR ? "G_TEXTURE_GEN_LINEAR | " : "",
mode & G_CULL_FRONT ? "G_CULL_FRONT | " : "",
mode & G_CULL_BACK ? "G_CULL_BACK | " : "",
mode & G_FOG ? "G_FOG | " : "",
mode & G_CLIPPING ? "G_CLIPPING" : "" );
}
void gSPSetOtherMode_H(u32 _length, u32 _shift, u32 _data)
{
const u32 mask = (((u64)1 << _length) - 1) << _shift;
gDP.otherMode.h = (gDP.otherMode.h&(~mask)) | _data;
if (mask & 0x00300000) // cycle type
gDP.changed |= CHANGED_CYCLETYPE;
DebugMsg(DEBUG_NORMAL, "gSPSetOtherMode_H");
#ifdef DEBUG_DUMP
std::string strRes;
if (mask & 0x00000030) {
strRes.append(AlphaDitherText[(gDP.otherMode.h>>4) & 3]);
strRes.append(" | ");
}
if (mask & 0x000000C0) {
strRes.append(ColorDitherText[(gDP.otherMode.h >> 6) & 3]);
strRes.append(" | ");
}
if (mask & 0x00003000) {
strRes.append(TextureFilterText[(gDP.otherMode.h & 0x00003000) >> 12]);
strRes.append(" | ");
}
if (mask & 0x0000C000) {
strRes.append(TextureLUTText[(gDP.otherMode.h & 0x0000C000) >> 14]);
strRes.append(" | ");
}
if (mask & 0x00300000) {
strRes.append(CycleTypeText[(gDP.otherMode.h & 0x00300000) >> 20]);
strRes.append(" | ");
}
if (mask & 0x00010000) {
strRes.append("LOD_en : ");
strRes.append((gDP.otherMode.h & 0x00010000) ? "yes | " : "no | ");
}
if (mask & 0x00060000) {
strRes.append(TextureDetailText[gDP.otherMode.textureDetail]);
strRes.append(" | ");
}
if (mask & 0x00080000) {
strRes.append("Persp_en : ");
strRes.append((gDP.otherMode.h & 0x00080000) ? "yes" : "no");
}
DebugMsg(DEBUG_NORMAL, "( %s)", strRes.c_str());
#endif
DebugMsg(DEBUG_NORMAL, " result: %08x\n", gDP.otherMode.h);
}
void gSPSetOtherMode_L(u32 _length, u32 _shift, u32 _data)
{
const u32 mask = (((u64)1 << _length) - 1) << _shift;
gDP.otherMode.l = (gDP.otherMode.l&(~mask)) | _data;
if (mask & 0x00000003) // alpha compare
gDP.changed |= CHANGED_ALPHACOMPARE;
if (mask & 0xFFFFFFF8) // rendermode / blender bits
gDP.changed |= CHANGED_RENDERMODE;
DebugMsg(DEBUG_NORMAL, "gSPSetOtherMode_L");
#ifdef DEBUG_DUMP
std::string strRes;
if (mask & 0x00000003) {
strRes.append(AlphaCompareText[gDP.otherMode.l & 0x00000003]);
strRes.append(" | ");
}
if (mask & 0x00000004) {
strRes.append(DepthSourceText[(gDP.otherMode.l & 0x00000004) >> 2]);
strRes.append(" | ");
}
if (mask & 0xFFFFFFF8) { // rendermode / blender bits
strRes.append(" rendermode");
}
DebugMsg(DEBUG_NORMAL, "( %s)", strRes.c_str());
#endif
DebugMsg(DEBUG_NORMAL, " result: %08x\n", gDP.otherMode.l);
}
void gSPLine3D(u32 v0, u32 v1, u32 flag )
{
dwnd().getDrawer().drawLine(v0, v1, 1.5f);
DebugMsg(DEBUG_NORMAL, "gSPLine3D( %i, %i, %i )\n", v0, v1, flag);
}
void gSPLineW3D(u32 v0, u32 v1, u32 wd, u32 flag )
{
dwnd().getDrawer().drawLine(v0, v1, 1.5f + wd * 0.5f);
DebugMsg(DEBUG_NORMAL, "gSPLineW3D( %i, %i, %i, %i )\n", v0, v1, wd, flag);
}
void gSPSetStatus(u32 sid, u32 val)
{
assert(sid <= 12);
gSP.status[sid>>2] = val;
DebugMsg(DEBUG_NORMAL, "gSPSetStatus sid=%u val=%u\n", sid, val);
}
struct uSprite {
u32 imagePtr;
u32 tlutPtr;
s16 imageW;
s16 stride;
s8 imageSiz;
s8 imageFmt;
s16 imageH;
s16 imageY;
s16 imageX;
s8 dummy[4];
}; /* 24 bytes */
static
void _loadSpriteImage(const uSprite *_pSprite)
{
gSP.bgImage.address = RSP_SegmentToPhysical( _pSprite->imagePtr );
gSP.bgImage.width = _pSprite->stride;
gSP.bgImage.height = _pSprite->imageY + _pSprite->imageH;
gSP.bgImage.format = _pSprite->imageFmt;
gSP.bgImage.size = _pSprite->imageSiz;
gSP.bgImage.palette = 0;
gDP.tiles[0].textureMode = TEXTUREMODE_BGIMAGE;
gSP.bgImage.imageX = _pSprite->imageX;
gSP.bgImage.imageY = _pSprite->imageY;
gSP.bgImage.scaleW = gSP.bgImage.scaleH = 1.0f;
if (config.frameBufferEmulation.enable != 0)
{
FrameBuffer *pBuffer = frameBufferList().findBuffer(gSP.bgImage.address);
if (pBuffer != nullptr) {
if (pBuffer->m_cfb) {
frameBufferList().removeBuffer(pBuffer->m_startAddress);
return;
}
gDP.tiles[0].frameBufferAddress = pBuffer->m_startAddress;
gDP.tiles[0].textureMode = TEXTUREMODE_FRAMEBUFFER_BG;
gDP.tiles[0].loadType = LOADTYPE_TILE;
gDP.changed |= CHANGED_TMEM;
}
}
}
void gSPSprite2DBase(u32 _base)
{
DebugMsg(DEBUG_NORMAL, "gSPSprite2DBase\n");
assert(RSP.nextCmd == 0xBE);
const word address = RSP_SegmentToPhysical( _base );
uSprite *pSprite = (uSprite*)&RDRAM[address];
if (pSprite->tlutPtr != 0) {
gDPSetTextureImage( G_IM_FMT_RGBA, G_IM_SIZ_16b, 1, pSprite->tlutPtr );
gDPSetTile( G_IM_FMT_RGBA, G_IM_SIZ_16b, 0, 256, 7, 0, G_TX_NOMIRROR | G_TX_WRAP, G_TX_NOMIRROR | G_TX_WRAP, 0, 0, 0, 0 );
gDPLoadTLUT( 7, 0, 0, 1020, 0 );
if (pSprite->imageFmt != G_IM_FMT_RGBA)
gDP.otherMode.textureLUT = G_TT_RGBA16;
else
gDP.otherMode.textureLUT = G_TT_NONE;
} else
gDP.otherMode.textureLUT = G_TT_NONE;
_loadSpriteImage(pSprite);
gSPTexture( 1.0f, 1.0f, 0, 0, TRUE );
gDP.otherMode.texturePersp = 1;
const f32 z = (gDP.otherMode.depthSource == G_ZS_PRIM) ? gDP.primDepth.z : gSP.viewport.nearz;
const f32 w = 1.0f;
f32 scaleX = 1.0f, scaleY = 1.0f;
u32 flipX = 0, flipY = 0;
do {
u32 w0 = *(u32*)&RDRAM[RSP.PC[RSP.PCi]];
u32 w1 = *(u32*)&RDRAM[RSP.PC[RSP.PCi] + 4];
RSP.cmd = _SHIFTR( w0, 24, 8 );
RSP.PC[RSP.PCi] += 8;
RSP.nextCmd = _SHIFTR( *(u32*)&RDRAM[RSP.PC[RSP.PCi]], 24, 8 );
if ( RSP.cmd == 0xBE ) { // gSPSprite2DScaleFlip
scaleX = _FIXED2FLOAT( _SHIFTR(w1, 16, 16), 10 );
scaleY = _FIXED2FLOAT( _SHIFTR(w1, 0, 16), 10 );
flipX = _SHIFTR(w0, 8, 8);
flipY = _SHIFTR(w0, 0, 8);
continue;
}
// gSPSprite2DDraw
const f32 frameX = _FIXED2FLOAT(((s16)_SHIFTR(w1, 16, 16)), 2);
const f32 frameY = _FIXED2FLOAT(((s16)_SHIFTR(w1, 0, 16)), 2);
const f32 frameW = pSprite->imageW / scaleX;
const f32 frameH = pSprite->imageH / scaleY;
f32 ulx, uly, lrx, lry;
if (flipX != 0) {
ulx = frameX + frameW;
lrx = frameX;
} else {
ulx = frameX;
lrx = frameX + frameW;
}
if (flipY != 0) {
uly = frameY + frameH;
lry = frameY;
} else {
uly = frameY;
lry = frameY + frameH;
}
f32 uls = pSprite->imageX;
f32 ult = pSprite->imageY;
f32 lrs = uls + pSprite->imageW;
f32 lrt = ult + pSprite->imageH;
// Hack for WCW Nitro.
if ((config.generalEmulation.hacks & hack_WCWNitro) != 0) {
const u32 scale = u32(scaleY);
gSP.bgImage.height /= scale;
gSP.bgImage.imageY /= scale;
ult /= scaleY;
lrt /= scaleY;
gSP.bgImage.width *= scale;
}
GraphicsDrawer & drawer = dwnd().getDrawer();
drawer.setDMAVerticesSize(4);
SPVertex * pVtx = drawer.getDMAVerticesData();
SPVertex & vtx0 = pVtx[0];
vtx0.x = ulx;
vtx0.y = uly;
vtx0.z = z;
vtx0.w = w;
vtx0.s = uls;
vtx0.t = ult;
SPVertex & vtx1 = pVtx[1];
vtx1.x = lrx;
vtx1.y = uly;
vtx1.z = z;
vtx1.w = w;
vtx1.s = lrs;
vtx1.t = ult;
SPVertex & vtx2 = pVtx[2];
vtx2.x = ulx;
vtx2.y = lry;
vtx2.z = z;
vtx2.w = w;
vtx2.s = uls;
vtx2.t = lrt;
SPVertex & vtx3 = pVtx[3];
vtx3.x = lrx;
vtx3.y = lry;
vtx3.z = z;
vtx3.w = w;
vtx3.s = lrs;
vtx3.t = lrt;
if (pSprite->stride > 0)
drawer.drawScreenSpaceTriangle(4);
} while (RSP.nextCmd == 0xBD || RSP.nextCmd == 0xBE);
}
#ifndef __NEON_OPT
void(*gSPInverseTransformVector)(float vec[3], float mtx[4][4]) = gSPInverseTransformVector_default;
void(*gSPTransformVector)(float vtx[4], float mtx[4][4]) = gSPTransformVector_default;
#else
void gSPInverseTransformVector_NEON(float vec[3], float mtx[4][4]);
void gSPTransformVector_NEON(float vtx[4], float mtx[4][4]);
void(*gSPInverseTransformVector)(float vec[3], float mtx[4][4]) = gSPInverseTransformVector_NEON;
void(*gSPTransformVector)(float vtx[4], float mtx[4][4]) = gSPTransformVector_NEON;
#endif //__NEON_OPT
void gSPSetupFunctions()
{
g_ConkerUcode = GBI.getMicrocodeType() == F3DEX2CBFD;
}
#ifdef NATIVE
word RSP_SegmentToPhysical(word segaddr) {
if (RSP.translateSegment || (segaddr & 1)) {
RSP.translateSegment = false;
const u32 idx = (segaddr >> 24) & 0x0F;
const word addr = (segaddr & 0x00FFFFFE);
DebugMsg(DEBUG_NORMAL, "Translatings segment address %x (%x) -> %x\n", segaddr, idx, gSP.segment[idx] + addr);
return gSP.segment[idx] + addr;
}
return segaddr;
}
#endif